Control of plastid biogenesis by the ubiquitin-proteasome system

泛素-蛋白酶体系统对质体生物发生的控制

基本信息

  • 批准号:
    BB/K018442/1
  • 负责人:
  • 金额:
    $ 47.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Chloroplasts and mitochondria are normal components of many cells - they are sub-cellular structures called organelles. Interestingly, these two organelles evolved from bacteria that were engulfed by other cells over a billion years ago, and in many ways they still resemble free-living bacteria. Chloroplasts are found in plant cells, contain the green pigment chlorophyll, and are responsible for the reactions of photosynthesis (the process that captures sunlight energy and uses it to power the activities of the cell). Since photosynthesis is the only significant mechanism of energy-input into the living world, chloroplasts are of inestimable importance, not just to plants but to all life on Earth. Actually, chloroplasts belong to a wider family of related organelles called plastids. Other members of the family are the highly-pigmented chromoplasts in ripe fruits, and etioplasts in dark-grown plants. Although plastids do contain DNA (a relic from their evolutionary past as free-living photosynthetic bacteria), and so can make some of their own proteins, most of the proteins needed to form a functional plastid are encoded on DNA in the cell nucleus; these proteins are made outside of the plastid in the cellular matrix known as the cytosol. As plastids are each surrounded by a double membrane, or envelope, that is impervious to the passive movement of proteins, this presents a significant problem. To overcome the problem, plastids evolved a sophisticated protein import apparatus, which uses energy (in the form of ATP) to drive the import of proteins from the cytosol, across the envelope, to the plastid interior. This import apparatus comprises two molecular machines: one in the outer envelope membrane called TOC (an abbreviation of "Translocon at the outer envelope membrane of chloroplasts"), and another in the inner envelope membrane called TIC. Each machine is made up of several different proteins which cooperate to ensure the efficiency of import. We work on a model plant called Arabidopsis that has many advantages for research, such as an availability of numerous mutants (each one with a mutation in a specific gene). One such mutant plant, ppi1, has a defect in a TOC gene such that plastid protein import does not work efficiently. Several years ago, we identified another mutation called sp1 (this stands for "suppressor of ppi1") that counteracts the negative effects of ppi1. The gene disrupted by sp1 (the SP1 gene) encodes a type of regulatory protein called a "ubiquitin E3 ligase". These work by labelling-up unwanted proteins and targeting them for removal. Because this control mechanism was not previously known to operate in plastids, this discovery was an important breakthrough in biology. The SP1 E3 ligase carefully controls the composition of the TOC machinery so that the right proteins are always imported (this is normally good, but in the abnormal ppi1 background it is apparently a hindrance). Such control is very important when plastids need to convert from one form to another; e.g. when dark-germinated plants emerge into the light, etioplasts must change into chloroplasts so that photosynthesis can begin. In this project we will investigate whether SP1 is important for the conversion of chloroplasts into chromoplasts in tomato fruit. If it is, then our work may have commercial, agricultural importance by enabling the manipulation of fruit ripening in crops (e.g. tomato, bell pepper, citrus). We will also study in much greater detail how SP1 and related proteins control plastid development. For example, our work may elucidate how plants respond to stresses like salinity and drought, which are major limits on crop yield across the world. Photosynthetic performance (and thus the energy available to plants for growth) is strongly affected by stress, and we suspect that SP1 is involved in this process. Thus, knowledge gained from our work may enable improved adaptation of crops to adverse environmental conditions.
叶绿体和线粒体是许多细胞的正常组成部分 - 它们是称为细胞器的亚细胞结构。有趣的是,这两种细胞器是从十亿多年前被其他细胞吞噬的细菌进化而来的,并且在许多方面它们仍然类似于自由生活的细菌。叶绿体存在于植物细胞中,含有绿色色素叶绿素,负责光合作用反应(捕获阳光能量并利用其为细胞活动提供动力的过程)。由于光合作用是向生命世界输入能量的唯一重要机制,因此叶绿体不仅对植物而且对地球上的所有生命都具有不可估量的重要性。实际上,叶绿体属于一个更广泛的相关细胞器家族,称为质体。该家族的其他成员包括成熟水果中的高度色素体和深色植物中的黄质体。尽管质体确实含有DNA(作为自由生活的光合细菌的进化过程中的遗物),因此可以制造一些自己的蛋白质,但形成功能性质体所需的大多数蛋白质都是由细胞核中的DNA编码的;这些蛋白质是在质体外部的细胞基质(称为胞质溶胶)中产生的。由于每个质体都被双层膜或包膜包围,而蛋白质的被动运动不受其影响,因此这提出了一个重大问题。为了克服这个问题,质体进化出了一种复杂的蛋白质输入装置,它使用能量(以 ATP 的形式)驱动蛋白质从细胞质输入,穿过包膜,到达质体内部。该输入装置包括两个分子机器:一个位于外膜中,称为TOC(“叶绿体外膜Translocon”的缩写),另一个位于内膜中,称为TIC。每台机器都由几种不同的蛋白质组成,它们相互配合以保证导入的效率。我们研究一种名为拟南芥的模型植物,它对研究具有许多优势,例如可以获得大量突变体(每个突变体都具有特定基因的突变)。其中一种突变植物 ppi1 的 TOC 基因存在缺陷,导致质体蛋白导入无法有效发挥作用。几年前,我们发现了另一种名为 sp1(代表“ppi1 抑制子”)的突变,它可以抵消 ppi1 的负面影响。被 sp1 破坏的基因(SP1 基因)编码一种称为“泛素 E3 连接酶”的调节蛋白。这些方法的工作原理是标记不需要的蛋白质并针对它们进行去除。由于之前并不知道这种控制机制在质体中起作用,因此这一发现是生物学上的一个重要突破。 SP1 E3 连接酶仔细控制 TOC 机器的组成,以便始终导入正确的蛋白质(这通常是好的,但在异常的 ppi1 背景中,这显然是一个障碍)。当质体需要从一种形式转化为另一种形式时,这种控制非常重要。例如当黑暗发芽的植物出现在阳光下时,黄质体必须转变为叶绿体,以便开始光合作用。在这个项目中,我们将研究 SP1 对于番茄果实中叶绿体向有色体的转化是否重要。如果是的话,那么我们的工作可能具有商业和农业重要性,因为我们能够操纵农作物(例如番茄、甜椒、柑橘)的果实成熟。我们还将更详细地研究 SP1 和相关蛋白如何控制质体发育。例如,我们的工作可能会阐明植物如何应对盐度和干旱等胁迫,这些胁迫是世界各地农作物产量的主要限制。光合作用性能(以及植物生长所需的能量)受到胁迫的强烈影响,我们怀疑 SP1 参与了这一过程。因此,从我们的工作中获得的知识可能有助于提高作物对不利环境条件的适应能力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato
  • DOI:
    10.1038/s41477-021-00916-y
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
    18
  • 作者:
    Ling, Qihua;Sadali, Najiah Mohd;Jarvis, R. Paul
  • 通讯作者:
    Jarvis, R. Paul
Analysis of Protein Import into Chloroplasts Isolated from Stressed Plants
The ubiquitin-proteasome system regulates chloroplast biogenesis.
Evolutionary, molecular and genetic analyses of Tic22 homologues in Arabidopsis thaliana chloroplasts.
  • DOI:
    10.1371/journal.pone.0063863
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kasmati AR;Töpel M;Khan NZ;Patel R;Ling Q;Karim S;Aronsson H;Jarvis P
  • 通讯作者:
    Jarvis P
Chloroplast Ubiquitin E3 Ligase SP1: Does It Really Function in Peroxisomes?
  • DOI:
    10.1104/pp.17.00948
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Ling, Qihua;Li, Na;Jarvis, Paul
  • 通讯作者:
    Jarvis, Paul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Jarvis其他文献

Associations Between Physical Characteristics and Golf Clubhead Speed: A Systematic Review with Meta-Analysis.
物理特征与高尔夫球杆头速度之间的关联:荟萃分析的系统回顾。
  • DOI:
    10.1007/s40279-024-02004-5
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Alex Brennan;Andrew Murray;Margo Mountjoy;John Hellstrom;D. Coughlan;Jack Wells;Simon L Brearley;Alex Ehlert;Paul Jarvis;Anthony Turner;Chris Bishop
  • 通讯作者:
    Chris Bishop
The Arabidopsis Book(control of plastid development, protein import, division and inheritance.)
拟南芥书(质体发育、蛋白质输入、分裂和遗传的控制。)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wataru Sakamoto;Shin-ya Miyagishima;Paul Jarvis
  • 通讯作者:
    Paul Jarvis
Supporting Creativity and Appreciation of Uncertainty in Exploring Geo-coded Public Health Data
支持探索地理编码公共卫生数据时的创造力和对不确定性的认识
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    S. Thew;Alistair Sutcliffe;O. Bruijn;John McNaught;Rob Procter;Paul Jarvis;Iain Buchan
  • 通讯作者:
    Iain Buchan
User engagement by user-centred design in e-Health
电子医疗中以用户为中心的设计提高用户参与度

Paul Jarvis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Jarvis', 18)}}的其他基金

Defining the role of SUMO in regulating chloroplast biogenesis and functions
定义 SUMO 在调节叶绿体生物发生和功能中的作用
  • 批准号:
    BB/W015021/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Uncovering how plant pathogens take control of chloroplast protein import to limit chloroplast-mediated immunity
揭示植物病原体如何控制叶绿体蛋白输入以限制叶绿体介导的免疫
  • 批准号:
    BB/X000192/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Defining the scope and components of ubiquitin-dependent chloroplast-associated protein degradation
定义泛素依赖性叶绿体相关蛋白降解的范围和组成部分
  • 批准号:
    BB/V007300/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Application of the plastidic E3 ligase SP1 in crop improvement, using tomato and rice as models
质体E3连接酶SP1在作物改良中的应用(以番茄和水稻为模型)
  • 批准号:
    BB/R005591/1
  • 财政年份:
    2018
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Elucidating the role of SP2 and the SP1-SP2 machinery in chloroplast protein degradation
阐明 SP2 和 SP1-SP2 机制在叶绿体蛋白质降解中的作用
  • 批准号:
    BB/R016984/1
  • 财政年份:
    2018
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Chloroplast-Associated Degradation (CHLORAD): Molecular definition of a ubiquitin-dependent system for plastid protein removal in plants
叶绿体相关降解 (CHLORAD):植物中质体蛋白去除泛素依赖性系统的分子定义
  • 批准号:
    BB/R009333/1
  • 财政年份:
    2018
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Role of the chloroplast ubiquitin E3 ligase SP1 in abiotic stress tolerance in plants
叶绿体泛素 E3 连接酶 SP1 在植物非生物胁迫耐受中的作用
  • 批准号:
    BB/N006372/1
  • 财政年份:
    2016
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Investigating the function of a ClpC/Hsp100-type chaperone in chloroplast preprotein import
研究 ClpC/Hsp100 型伴侣在叶绿体前蛋白输入中的功能
  • 批准号:
    BB/J017256/2
  • 财政年份:
    2013
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Investigating the roles of Arabidopsis STIC1 and STIC2 in chloroplast protein transport
研究拟南芥 STIC1 和 STIC2 在叶绿体蛋白转运中的作用
  • 批准号:
    BB/J009369/2
  • 财政年份:
    2013
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant
Investigating the roles of Arabidopsis STIC1 and STIC2 in chloroplast protein transport
研究拟南芥 STIC1 和 STIC2 在叶绿体蛋白转运中的作用
  • 批准号:
    BB/J009369/1
  • 财政年份:
    2012
  • 资助金额:
    $ 47.71万
  • 项目类别:
    Research Grant

相似国自然基金

基于跨组学数据研究质体基因组中非同义突变对蛋白质结构的影响
  • 批准号:
    32300539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
成脂调节蛋白ADIRF上调KROX20/KLF4通道诱导异体脂肪脱细胞基质体内成脂的机制研究
  • 批准号:
    82372544
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
超声响应型氟功能化胆碱磷酸脂质体在神经元非侵入远程调控的应用研究
  • 批准号:
    22375034
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超声联合声敏脂质体诱导铁死亡调控三阴性乳腺癌免疫应答的研究
  • 批准号:
    82302201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
质体蓝素基因TaPETE调控小麦耐热性的分子机制
  • 批准号:
    32301847
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    10321648
  • 财政年份:
    2020
  • 资助金额:
    $ 47.71万
  • 项目类别:
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    10534736
  • 财政年份:
    2020
  • 资助金额:
    $ 47.71万
  • 项目类别:
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    9886122
  • 财政年份:
    2020
  • 资助金额:
    $ 47.71万
  • 项目类别:
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    10580265
  • 财政年份:
    2020
  • 资助金额:
    $ 47.71万
  • 项目类别:
Mechanism of nucleus-to-plastid light signaling in controlling plastid transcription
核到质体光信号传导控制质体转录的机制
  • 批准号:
    10375791
  • 财政年份:
    2020
  • 资助金额:
    $ 47.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了