Defining the role of SUMO in regulating chloroplast biogenesis and functions
定义 SUMO 在调节叶绿体生物发生和功能中的作用
基本信息
- 批准号:BB/W015021/1
- 负责人:
- 金额:$ 81.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The human population is set to exceed 9bn by 2050, presenting significant challenges to food security and placing ever increasing pressure on natural resources. Thus, the need for increased crop yields with resilience to sub-optimal growing conditions is stronger than ever. To meet these demands it will be essential to develop improved varieties of our staple crops. Through research on the model plant thale cress, it is well established that the extent of protein modification by "SUMO" (which stands for "small ubiquitin-like modifier") increases in response to different abiotic stresses, including high salinity, high temperature, freezing, drought, and oxidative and heavy metal stresses; and that such "SUMOylation" is a vital aspect of plant stress responses. Previous studies identified over a thousand SUMO targets in thale cress, most of which are located in a central cellular structure called the nucleus. However, our latest results show that SUMO also acts on different parts of the plant cell called chloroplasts. In this project, we will define how and why SUMO acts on chloroplasts, and in so doing understand how it may be used to deliver more resilient crops.Chloroplasts are the cellular constituents (or organelles) that define plants. They contain the green pigment chlorophyll, and are the site of photosynthesis - the process which harnesses sunlight energy to power the activities of the cell and the growth of the plant. As photosynthesis is the only significant mechanism of energy-input into the living world, chloroplasts are of huge importance, not just to plants but to all life on Earth. Moreover, chloroplasts have critical roles in plant responses to stress, and so they are ideal targets for crop improvement.Chloroplasts are composed of thousands of different proteins, most of which are encoded by genes in the cell nucleus and, therefore, are made outside of the organelle in the cellular matrix known as the cytosol. As chloroplasts are surrounded by a double-membrane "envelope", sophisticated machinery is needed to import these proteins into the organelle; this comprises molecular machines in both membranes, called TOC (for "Translocon at the Outer membrane of Chloroplasts") and TIC. Each machine is composed of several proteins that work cooperatively to drive the import process.We recently made some significant breakthroughs in this area: We discovered that the constituent proteins of the TOC machinery are broken-down by a novel regulatory process named "CHLORAD" (which stands for "chloroplast-associated protein degradation"). In CHLORAD, unwanted TOC proteins are tagged with a protein modifier named ubiquitin, which targets them for removal and break-down. Thus, CHLORAD regulates the import of other proteins into the organelle, which in turn influences the development and operation of the organelle. Significantly, modifying CHLORAD activity makes plants more tolerant of stress.Now, we have new results revealing that the SUMO system also acts on chloroplasts. We believe that such SUMOylation destabilizes the TOC machinery to regulate protein import. In this project, we will study the mechanisms of SUMO-dependent chloroplast regulation in detail. We will define the SUMO pathway that acts on TOC proteins, and elucidate its physiological significance. Furthermore, inspired by our latest data suggesting that SUMO actually acts on a large number of chloroplast proteins, we will systematically identify the full range of SUMOylated chloroplast proteins, and study the effects of such SUMOylation. Lastly, we will investigate whether there is crosstalk between the SUMO and CHLORAD systems in TOC regulation.Together, our experiments will shed unprecedented new light on the mechanisms and significance of SUMO-dependent control of chloroplast functions and, in turn, plant development. This knowledge will be invaluable for the development of crops with improved chloroplast performance and stress resilience.
到 2050 年,人口将超过 90 亿,这对粮食安全提出了重大挑战,并对自然资源造成越来越大的压力。因此,对提高作物产量并适应次优生长条件的需求比以往任何时候都更加强烈。为了满足这些需求,开发主要农作物的改良品种至关重要。通过对模型植物拟南芥的研究,已经明确“SUMO”(代表“小泛素样修饰剂”)对蛋白质的修饰程度会随着不同的非生物胁迫而增加,包括高盐度、高温、冰冻、干旱、氧化和重金属胁迫;这种“SUMO化”是植物应激反应的一个重要方面。之前的研究在拟南芥中发现了超过一千个 SUMO 目标,其中大部分位于称为细胞核的中央细胞结构中。然而,我们的最新结果表明,SUMO 还作用于植物细胞的不同部分(称为叶绿体)。在这个项目中,我们将定义 SUMO 如何以及为何作用于叶绿体,并在此过程中了解如何使用它来提供更具弹性的作物。叶绿体是定义植物的细胞成分(或细胞器)。它们含有绿色色素叶绿素,是光合作用的场所——利用阳光能量为细胞活动和植物生长提供动力的过程。由于光合作用是向生命世界输入能量的唯一重要机制,叶绿体不仅对植物而且对地球上的所有生命都非常重要。此外,叶绿体在植物对胁迫的反应中发挥着关键作用,因此它们是作物改良的理想目标。叶绿体由数千种不同的蛋白质组成,其中大部分由细胞核中的基因编码,因此是在细胞核之外产生的。细胞基质中的细胞器称为胞质溶胶。由于叶绿体被双膜“包膜”包围,因此需要复杂的机器将这些蛋白质导入细胞器;这包括两个膜中的分子机器,称为 TOC(“叶绿体外膜的转运蛋白”)和 TIC。每台机器都由多种蛋白质组成,这些蛋白质协同工作来驱动导入过程。我们最近在这一领域取得了一些重大突破:我们发现TOC机器的组成蛋白质被一种名为“CHLORAD”的新型调节过程分解(代表“叶绿体相关蛋白降解”)。在 CHLORAD 中,不需要的 TOC 蛋白被一种名为泛素的蛋白修饰剂标记,该修饰剂针对这些蛋白进行去除和分解。因此,CHLORAD 调节其他蛋白质进入细胞器,进而影响细胞器的发育和运作。值得注意的是,改变 CHLORAD 活性使植物更能耐受胁迫。现在,我们的新结果表明 SUMO 系统也作用于叶绿体。我们认为这种 SUMO 化会破坏调节蛋白质输入的 TOC 机制的稳定性。在本项目中,我们将详细研究 SUMO 依赖性叶绿体调节机制。我们将定义作用于 TOC 蛋白的 SUMO 途径,并阐明其生理意义。此外,受我们最新数据的启发,SUMO 实际上作用于大量叶绿体蛋白,我们将系统地识别全系列 SUMO 化叶绿体蛋白,并研究这种 SUMO 化的影响。最后,我们将研究 SUMO 和 CHLORAD 系统在 TOC 调节中是否存在串扰。我们的实验将共同揭示 SUMO 依赖性叶绿体功能控制的机制和意义,进而揭示植物发育的机制和意义。这些知识对于开发具有改善叶绿体性能和抗逆能力的作物具有无价的价值。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Jarvis其他文献
Associations Between Physical Characteristics and Golf Clubhead Speed: A Systematic Review with Meta-Analysis.
物理特征与高尔夫球杆头速度之间的关联:荟萃分析的系统回顾。
- DOI:
10.1007/s40279-024-02004-5 - 发表时间:
2024 - 期刊:
- 影响因子:9.8
- 作者:
Alex Brennan;Andrew Murray;Margo Mountjoy;John Hellstrom;D. Coughlan;Jack Wells;Simon L Brearley;Alex Ehlert;Paul Jarvis;Anthony Turner;Chris Bishop - 通讯作者:
Chris Bishop
The Arabidopsis Book(control of plastid development, protein import, division and inheritance.)
拟南芥书(质体发育、蛋白质输入、分裂和遗传的控制。)
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Wataru Sakamoto;Shin-ya Miyagishima;Paul Jarvis - 通讯作者:
Paul Jarvis
Supporting Creativity and Appreciation of Uncertainty in Exploring Geo-coded Public Health Data
支持探索地理编码公共卫生数据时的创造力和对不确定性的认识
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:1.7
- 作者:
S. Thew;Alistair Sutcliffe;O. Bruijn;John McNaught;Rob Procter;Paul Jarvis;Iain Buchan - 通讯作者:
Iain Buchan
User engagement by user-centred design in e-Health
电子医疗中以用户为中心的设计提高用户参与度
- DOI:
10.1098/rsta.2010.0141 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
A. Sutcliffe;S. Thew;O. de Bruijn;I. Buchan;Paul Jarvis;J. McNaught;R. Procter - 通讯作者:
R. Procter
Paul Jarvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Jarvis', 18)}}的其他基金
Uncovering how plant pathogens take control of chloroplast protein import to limit chloroplast-mediated immunity
揭示植物病原体如何控制叶绿体蛋白输入以限制叶绿体介导的免疫
- 批准号:
BB/X000192/1 - 财政年份:2023
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
Defining the scope and components of ubiquitin-dependent chloroplast-associated protein degradation
定义泛素依赖性叶绿体相关蛋白降解的范围和组成部分
- 批准号:
BB/V007300/1 - 财政年份:2021
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
Application of the plastidic E3 ligase SP1 in crop improvement, using tomato and rice as models
质体E3连接酶SP1在作物改良中的应用(以番茄和水稻为模型)
- 批准号:
BB/R005591/1 - 财政年份:2018
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
Elucidating the role of SP2 and the SP1-SP2 machinery in chloroplast protein degradation
阐明 SP2 和 SP1-SP2 机制在叶绿体蛋白质降解中的作用
- 批准号:
BB/R016984/1 - 财政年份:2018
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
Chloroplast-Associated Degradation (CHLORAD): Molecular definition of a ubiquitin-dependent system for plastid protein removal in plants
叶绿体相关降解 (CHLORAD):植物中质体蛋白去除泛素依赖性系统的分子定义
- 批准号:
BB/R009333/1 - 财政年份:2018
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
Role of the chloroplast ubiquitin E3 ligase SP1 in abiotic stress tolerance in plants
叶绿体泛素 E3 连接酶 SP1 在植物非生物胁迫耐受中的作用
- 批准号:
BB/N006372/1 - 财政年份:2016
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
Investigating the function of a ClpC/Hsp100-type chaperone in chloroplast preprotein import
研究 ClpC/Hsp100 型伴侣在叶绿体前蛋白输入中的功能
- 批准号:
BB/J017256/2 - 财政年份:2013
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
Investigating the roles of Arabidopsis STIC1 and STIC2 in chloroplast protein transport
研究拟南芥 STIC1 和 STIC2 在叶绿体蛋白转运中的作用
- 批准号:
BB/J009369/2 - 财政年份:2013
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
Control of plastid biogenesis by the ubiquitin-proteasome system
泛素-蛋白酶体系统对质体生物发生的控制
- 批准号:
BB/K018442/1 - 财政年份:2013
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
Investigating the roles of Arabidopsis STIC1 and STIC2 in chloroplast protein transport
研究拟南芥 STIC1 和 STIC2 在叶绿体蛋白转运中的作用
- 批准号:
BB/J009369/1 - 财政年份:2012
- 资助金额:
$ 81.76万 - 项目类别:
Research Grant
相似国自然基金
基于可解释机器学习的科学知识角色转变预测研究
- 批准号:72304108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
骑墙守望还是全力奔赴:基于角色理论的混合创业进入、退出与长期回报研究
- 批准号:72372119
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
非宿主噬菌体在宿主噬菌体裂解水稻白叶枯病菌中的帮助角色及其自我牺牲机制研究
- 批准号:32372614
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
喜忧参半:服务机器人角色对旅游企业员工幸福感的双路径影响机制研究
- 批准号:72302099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
旅游参与度差异视角下乡村妇女社会角色变迁、自我效能感及其关联机制研究
- 批准号:72362010
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Investigating the role of Sumo in piRNA-mediated germline heterochromatin maintenance in C.elegans
研究 Sumo 在 piRNA 介导的线虫种系异染色质维持中的作用
- 批准号:
10750099 - 财政年份:2023
- 资助金额:
$ 81.76万 - 项目类别:
The role of SUMO in regulating fungal diseases in crops plants through the chitin receptor CERK1.
SUMO 通过几丁质受体 CERK1 调节农作物真菌病害的作用。
- 批准号:
2784609 - 财政年份:2023
- 资助金额:
$ 81.76万 - 项目类别:
Studentship
Genetic requirements for executing SUMO stress signals and achieving stress tolerance
执行 SUMO 应激信号和实现应激耐受性的遗传要求
- 批准号:
10514836 - 财政年份:2022
- 资助金额:
$ 81.76万 - 项目类别:
The role of a novel SUMO conjugation process on nuclear receptor function and gene transcription
新型相扑缀合过程对核受体功能和基因转录的作用
- 批准号:
RGPIN-2019-05580 - 财政年份:2022
- 资助金额:
$ 81.76万 - 项目类别:
Discovery Grants Program - Individual