Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
基本信息
- 批准号:10451954
- 负责人:
- 金额:$ 17.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdoptionAffectBehaviorBiological ModelsClinicalCommunity HospitalsConsensusDataData ScienceData ScientistData SetDecision MakingDecision Support ModelFeedbackFrequenciesFutureGoalsHandHealth systemHealthcare SystemsInstitutionInterventionKnowledgeLearningMachine LearningMapsMeasuresMedical DeviceMedicineMethodologyMethodsModelingMonitorPathway interactionsPatientsPerformancePhaseProcessProcess MeasureProviderPublic HealthRegulationResearchRiskSafetySeriesService settingSystemTechniquesTimeTrustUnited States National Library of MedicineWorkbasebioinformatics toolcare deliveryclinical careclinical decision supportclinical decision-makingcomplex datacost estimatedynamic systemevidence baseimplementation barriersimplementation evaluationimplementation outcomesimplementation scienceimprovedinnovationinsightmachine learning algorithmmachine learning modelmodel buildingmodels and simulationmultidisciplinaryprospectiveresearch clinical testingresponsesupport toolstheoriestooluptakeusability
项目摘要
PROJECT SUMMARY/ABSTRACT
The proliferation of “black box” Machine Learning (ML) models for Clinical Decision Support (CDS) has raised
concerns regarding CDS interpretability, actionability and overall usability, rendering a critical need for a clear
process that engages various stakeholders including both developers and users in implementation planning.
Our long-term goal is to formalize a process to guide health systems in planning, monitoring and evaluating
CDS implementation. The overall objective for this R21 is to develop and evaluate a generalizable strategy
to bring multidisciplinary stakeholders together during the CDS exploration phase to identify
facilitators and barriers to implementation in their contexts. In doing so, we will use Participatory System
Dynamics (PSD) modeling as a multi-component strategy to evaluate and plan implementation with
stakeholders during the exploration phase of implementation, when decision-making occurs, in a way where
ML-enabled CDS can be sustained over time. As such, we will focus on the upstream implementation
outcomes of acceptability, appropriateness, and feasibility of ML-enabled CDS. The rationale for this project is
that a process that engages diverse stakeholders in implementation planning early on will clarify commitment
to implementation and potential for adoption by revealing acceptability, feasibility, and appropriateness. For
this project we will focus on one particular set of ML-enabled CDS: Early Warning Scores (EWSs), used to
identify decompensating patients. We plan to accomplish our overall objective by pursuing two specific aims: 1.
Engage multidisciplinary stakeholders involved in EWS implementation (users, developers, implementers,
owners) from two systematically varying adoption contexts to co-define common barriers and facilitators to key
implementation outcomes of CDS acceptability, appropriateness, and feasibility using group model building
scripts from the field of system dynamics and 2. Evaluate the PSD process by measuring change in
commitment to adopt CDS (using measures of acceptability, appropriateness, and feasibility), eliciting
feedback, and estimating intervention effort. We will obtain data via a series of group modeling sessions from
stakeholders who have used CDS in different contexts, where alerts vary by target user, time, and frequency
among other factors. We will employ well-defined scripts from the field of System Dynamics modeling to
facilitate group discussion toward developing a shared theory about the problem of ML-enabled CDS response
(Aim 1). Because implementation of any strategy requires adaptation, we will evaluate the PSD process (Aim
2) to refine and prepare for use elsewhere. This contribution is significant because EWSs are widely used
across both academic and community hospitals. This contribution is innovative by using group modeling
techniques for the problem of ML-enabled CDS implementation, creating both methodological and substantive
findings. A future R01 will prospectively assess benefits of using this process in multiple use case settings
while continuing to build out the dynamic systems model of factors for downstream adoption.
项目概要/摘要
用于临床决策支持 (CDS) 的“黑匣子”机器学习 (ML) 模型的激增引起了人们的关注。
关于 CDS 可解释性、可操作性和整体可用性的担忧,迫切需要一个明确的
让包括开发人员和用户在内的各方参与利益相关者实施规划的过程。
我们的长期目标是正式制定一个流程来指导卫生系统进行规划、监测和评估
CDS 实施的总体目标是开发和评估通用策略。
在 CDS 探索阶段将多学科利益相关者聚集在一起,以确定
在此过程中,我们将使用参与式系统。
动力学(PSD)建模作为一种多组件策略来评估和规划实施
利益相关者在实施的探索阶段,当决策发生时,以某种方式
支持 ML 的 CDS 可以随着时间的推移而持续,因此,我们将重点关注上游实施。
支持 ML 的 CDS 的可接受性、适当性和可行性的结果 该项目的理由是。
尽早让不同利益相关者参与实施规划的流程将澄清承诺
通过揭示可接受性、可行性和适当性来评估实施和采用的潜力。
在这个项目中,我们将重点关注一组特定的支持 ML 的 CDS:早期预警评分 (EWS),用于
我们计划通过追求两个具体目标来实现我们的总体目标:1.
让多学科利益相关者参与 EWS 实施(用户、开发人员、实施者、
所有者)从两个系统不同的采用环境中共同定义关键的共同障碍和促进因素
使用组模型构建 CDS 的可接受性、适当性和可行性的实施结果
系统动力学领域的脚本和 2. 通过测量变化来评估 PSD 过程
承诺采用 CDS(使用可接受性、适当性和可行性的衡量标准),引发
我们将通过一系列小组建模会议获取数据。
在不同环境中使用 CDS 的利益相关者,其中警报因目标用户、时间和频率而异
除其他因素外,我们将采用系统动力学建模领域定义明确的脚本来
促进小组讨论,以形成关于 ML 支持的 CDS 响应问题的共享发展理论
(目标 1)由于任何策略的实施都需要适应,因此我们将评估 PSD 流程(目标 1)。
2) 完善并准备在其他地方使用,这一贡献意义重大,因为 EWS 已得到广泛使用。
这项贡献在学术医院和社区医院中都是通过使用群体建模来实现的。
解决基于机器学习的 CDS 实施问题的技术,创造了方法论和实质性
未来的 R01 将前瞻性地评估在多个用例设置中使用此流程的好处。
同时继续构建供下游采用的因素的动态系统模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Alan Goldstein其他文献
Benjamin Alan Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Alan Goldstein', 18)}}的其他基金
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10656387 - 财政年份:2022
- 资助金额:
$ 17.51万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10605248 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10192714 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10192714 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10414814 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10598693 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Multifactorial spatiotemporal analyses to evaluate environmental triggers and patient-level clinical characteristics of severe asthma exacerbations in children
多因素时空分析评估儿童严重哮喘急性发作的环境触发因素和患者水平的临床特征
- 批准号:
9884782 - 财政年份:2019
- 资助金额:
$ 17.51万 - 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:
10698195 - 财政年份:2017
- 资助金额:
$ 17.51万 - 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:
10523408 - 财政年份:2017
- 资助金额:
$ 17.51万 - 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
- 批准号:
8425985 - 财政年份:2013
- 资助金额:
$ 17.51万 - 项目类别:
相似国自然基金
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
视频化推广对数字农业技术采用的影响机制研究:基于知识约束的视角
- 批准号:72173050
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 17.51万 - 项目类别:
Adapting COVID-19 Prenatal Care Innovations for Patients At Risk of Adverse Pregnancy Outcomes: a Mixed Methods Study of the Plan for Appropriate Tailored Healthcare in Pregnancy
针对有不良妊娠结局风险的患者采用 COVID-19 产前护理创新:针对妊娠期适当定制医疗保健计划的混合方法研究
- 批准号:
10666730 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
Modulation of Macrophage Antifungal Activity by the Transcriptional Co-regulator CITED1
转录辅助调节因子 CITED1 对巨噬细胞抗真菌活性的调节
- 批准号:
10727860 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
SUPPORTING WHO ONCHOCERCIASIS ELIMINATION PROGRAMS: PROGRESSING A HIGHLY SENSITIVE AND ULTRA-SPECIFIC RAPID DIAGNOSTIC TEST TO COMMERCIALIZATION READINESS
支持世界卫生组织根除盘尾丝虫病计划:推进高度敏感和超特异性的快速诊断测试以做好商业化准备
- 批准号:
10697164 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别: