Multifactorial spatiotemporal analyses to evaluate environmental triggers and patient-level clinical characteristics of severe asthma exacerbations in children

多因素时空分析评估儿童严重哮喘急性发作的环境触发因素和患者水平的临床特征

基本信息

  • 批准号:
    9884782
  • 负责人:
  • 金额:
    $ 12.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-04 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

Asthma is a chronic heterogeneous airway disorder characterized by inflammation, mucus hypersecretion, airway hyperreactivity, and impaired airflow. Severe exacerbations of asthma occur frequently in children and require immediate use of systemic steroid therapy to prevent serious outcomes such as hospitalization or death. In addition to direct health risks, pediatric asthma exerts a substantial cost burden, as asthma exacerbations are a leading cause of emergency department visits, hospitalization, and missed school days. Multiple environmental factors are purported to play a role in asthma symptoms, including aeroallergens, pollutants, weather changes, and community viral outbreaks such as influenza. Additionally, asthma prevalence is greater in children of low socioeconomic status (SES) and in African-American and Hispanic/Latino children, suggesting both environmental and genetic effects on asthma incidence and severity. The existence of geographical asthma “hotspots” indicates that asthma prevalence and severity are influenced by place-based risks, including local air quality, built environment factors, access to health care providers, socioeconomic factors, culture, and behavior. To effectively prevent and treat pediatric asthma attacks, it is necessary to understand how patient-specific characteristics interact with environmental factors to render an individual susceptible to severe asthma exacerbations. Lacking sufficient power, previous studies have largely examined suspected asthma triggers in isolation; thus, there is a significant knowledge gap regarding how environmental factors interact with each other and with patient-level factors to promote severe asthma exacerbations in pediatric populations. We hypothesize that a longitudinal analysis of environmental exposures and patient-level factors will elucidate new multifactorial causes of severe asthma exacerbations. To elucidate the contributions and interactions of environmental and patient-level factors, we will apply machine learning approaches to a longitudinal (2007-2017) geocoded database of patient electronic health records detailing asthma-related health encounters and publicly available, overlapping spatiotemporal environmental data. Further, we will evaluate the interactions between person-level clinical factors, including obesity, history of premature birth/bronchopulmonary dysplasia, and atopy, to determine their effects on susceptibility to selected environmental triggers. These analyses will 1) provide an analysis of the relative contribution and interactions of environmental factors to pediatric asthma exacerbations, 2) identify geographic hotspots of asthma prevalence and severity, and 3) determine how person-level clinical factors influence susceptibility to different asthma triggers. Our findings will provide new insights into risk factors for severe asthma exacerbations, spur new studies into the biological mechanisms that underlie the interactions between human biology and the environment, inform preventive strategies and patient education efforts, and serve as a model that can be expanded to larger cohorts.
哮喘是一种慢性异质性气道疾病,其特征为炎症、粘液分泌过多、 气道过度反应和气流受损经常发生在儿童和儿童中。 需要立即使用全身类固醇治疗,以防止住院或死亡等严重后果。 除了直接的健康风险外,小儿哮喘还造成巨大的成本负担,因为哮喘恶化会导致儿童哮喘发作。 急诊就诊、住院和旷课的主要原因。 据称,影响哮喘症状的因素包括空气过敏原、污染物、天气变化、 此外,低收入儿童的哮喘患病率更高。 失业状况(SES)以及非裔美国人和西班牙裔/拉丁裔儿童,表明两者 环境和遗传对哮喘发病率和严重程度的影响 地理哮喘的存在。 “热点”表明哮喘患病率和严重程度受到地方风险的影响,包括当地空气 质量、建筑环境因素、获得医疗保健提供者的机会、社会经济因素、文化和行为。 为了有效预防和治疗小儿哮喘发作,有必要了解患者的具体情况 特征与环境因素相互作用,使个体易患严重哮喘 由于缺乏足够的证据,之前的研究主要检查了可疑的哮喘触发因素。 因此,对于环境因素如何相互作用,存在着巨大的知识差距。 其他因素以及患者层面的因素会促进儿科人群哮喘严重发作。 很快,对环境暴露和患者因素的纵向分析将阐明新的 哮喘严重发作的多因素原因 阐明哮喘严重发作的贡献和相互作用。 环境和患者层面的因素,我们将应用机器学习方法进行纵向(2007-2017) 患者电子健康记录的地理编码数据库,详细说明与哮喘相关的健康状况并公开 此外,我们将评估可用的、重叠的时空环境数据。 个人临床因素,包括肥胖、早产史/支气管肺发育不良和特应性, 以确定它们对选定环境触发因素的敏感性的影响。这些分析将 1) 提供一个结果。 环境因素对小儿哮喘发作的相对贡献和相互作用的分析,2) 确定哮喘患病率和严重程度的地理热点,以及 3) 确定个人层面的临床因素 影响对不同哮喘触发因素的易感性,我们的研究结果将为了解哮喘的危险因素提供新的见解。 严重的哮喘恶化,激发了对相互作用背后的生物学机制的新研究 人类生物学与环境、预防策略和患者教育工作之间的关系,以及 作为可以扩展到更大群体的模型。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Well-Child Care Attendance and Risk of Asthma Exacerbations.
儿童保健出勤率和哮喘恶化的风险。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Lang, Jason E;Tang, Monica;Zhao, Congwen;Hurst, Jillian;Wu, Angie;Goldstein, Benjamin A
  • 通讯作者:
    Goldstein, Benjamin A
Development of an electronic health records datamart to support clinical and population health research.
开发电子健康记录数据集市以支持临床和人口健康研究。
  • DOI:
  • 发表时间:
    2020-06-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hurst, Jillian H;Liu, Yaxing;Maxson, Pamela J;Permar, Sallie R;Boulware, L Ebony;Goldstein, Benjamin A
  • 通讯作者:
    Goldstein, Benjamin A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Alan Goldstein其他文献

Benjamin Alan Goldstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Alan Goldstein', 18)}}的其他基金

Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
  • 批准号:
    10656387
  • 财政年份:
    2022
  • 资助金额:
    $ 12.08万
  • 项目类别:
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
  • 批准号:
    10451954
  • 财政年份:
    2022
  • 资助金额:
    $ 12.08万
  • 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
  • 批准号:
    10605248
  • 财政年份:
    2020
  • 资助金额:
    $ 12.08万
  • 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
  • 批准号:
    10192714
  • 财政年份:
    2020
  • 资助金额:
    $ 12.08万
  • 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
  • 批准号:
    10192714
  • 财政年份:
    2020
  • 资助金额:
    $ 12.08万
  • 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
  • 批准号:
    10414814
  • 财政年份:
    2020
  • 资助金额:
    $ 12.08万
  • 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
  • 批准号:
    10598693
  • 财政年份:
    2020
  • 资助金额:
    $ 12.08万
  • 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
  • 批准号:
    10698195
  • 财政年份:
    2017
  • 资助金额:
    $ 12.08万
  • 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
  • 批准号:
    10523408
  • 财政年份:
    2017
  • 资助金额:
    $ 12.08万
  • 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
  • 批准号:
    8425985
  • 财政年份:
    2013
  • 资助金额:
    $ 12.08万
  • 项目类别:

相似海外基金

Racial disparities of open angle glaucoma: A study of mitochondria and oxidative stress in human trabecular meshwork
开角型青光眼的种族差异:人类小梁网线粒体和氧化应激的研究
  • 批准号:
    10735655
  • 财政年份:
    2023
  • 资助金额:
    $ 12.08万
  • 项目类别:
Sociocultural factors, DNA methylation and Risk of Diabetes in Hispanics/Latinos
西班牙裔/拉丁裔的社会文化因素、DNA 甲基化和糖尿病风险
  • 批准号:
    10735009
  • 财政年份:
    2023
  • 资助金额:
    $ 12.08万
  • 项目类别:
Chicago Alternative Prevention Study for BReast CAncer in Diverse Populations of High-Risk Women (CAPSBRACA)
芝加哥不同高危女性人群乳腺癌替代预防研究 (CAPSBRACA)
  • 批准号:
    10737279
  • 财政年份:
    2023
  • 资助金额:
    $ 12.08万
  • 项目类别:
Using a Health Disparity Research Framework to examine mechanisms linking Obstructive Sleep Apnea with higher Alzheimer’s disease risk in older Blacks/African-Americans
使用健康差异研究框架来研究老年黑人/非裔美国人中阻塞性睡眠呼吸暂停与阿尔茨海默病较高风险之间的联系机制
  • 批准号:
    10662903
  • 财政年份:
    2023
  • 资助金额:
    $ 12.08万
  • 项目类别:
Stress Response of Preterm Infants to NICU Caregiving
早产儿对 NICU 护理的应激反应
  • 批准号:
    10682923
  • 财政年份:
    2023
  • 资助金额:
    $ 12.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了