Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
基本信息
- 批准号:10598693
- 负责人:
- 金额:$ 32.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvance Care PlanningCaregiversClinicalCommunicationData ScientistDecision MakingDevelopmentDialysis procedureEnsureEthicsFocus GroupsFutureGoalsHealthHealthcareHemodialysisHospitalizationIndividualInfectionInternetLearningLife ExpectancyLong-Term CareMachine LearningMethodsModelingOutcomeOutputPalliative CareParentsPatient CarePatient riskPatientsPerformancePredictive AnalyticsProcessProliferatingProviderResearchRiskRisk FactorsScientistSpecialistTimeTranslatingTransplantationTrustUncertaintyUpdateWorkalgorithmic biasbaseclinical practicedesignexperienceimprovedinsightmachine learning predictionmodel buildingmodel designmortalitymortality riskpersonalized carepredictive modelingpredictive toolsresponsesecondary outcomeshared decision makingtool
项目摘要
Machine learning (ML) based clinical prediction models (CPMs) have proliferated over the past
few years, becoming a central component of healthcare. These tools show great promise in
informing both providers and patients of impending health outcomes, ultimately allowing for
greater personalization of patient care. In our parent R01 we are developing a ML based mortality
prediction model for patients undergoing hemodialysis. The goal of this tool is to predict both short
and long term mortality risk in order to promote shared decision making between patients and
providers. Importantly, there are a number of ethical concerns inherent in ML based CPMs. These
include consideration of ethical performance (i.e., algorithmic bias), ethical usage (i.e., ensuring
outputs are properly interpreted) and ethical implementation (i.e., the tool is properly integrated
into the clinical workflow. For this current NOSI we propose to explore questions of ethical usage
of ML based CPMs. To do this, we will conduct focus group of patients & their caregivers,
providers and data scientists. We will address questions of trust in ML based CPMs,
understanding of risk and optimal risk communication, interaction with CPMs and AI/ML tools and
usage of CPMs to empower patients and promote shared decision-making. We will compare
responses across constituencies. We will use our findings to develop practice oriented guidances
that target both develops and users of ML based CPMs.
基于机器学习 (ML) 的临床预测模型 (CPM) 在过去激增
几年来,成为医疗保健的核心组成部分。这些工具显示出巨大的前景
告知提供者和患者即将发生的健康结果,最终允许
患者护理更加个性化。在我们的母体 R01 中,我们正在开发基于 ML 的死亡率
血液透析患者的预测模型。该工具的目标是预测短期
和长期死亡风险,以促进患者和患者之间的共同决策
提供商。重要的是,基于机器学习的 CPM 存在许多固有的道德问题。这些
包括考虑道德表现(即算法偏差)、道德使用(即确保
输出得到正确解释)和道德实施(即该工具被正确集成
进入临床工作流程。对于当前的 NOSI,我们建议探讨道德使用问题
基于 ML 的 CPM。为此,我们将对患者及其护理人员进行焦点小组,
提供商和数据科学家。我们将解决基于 ML 的 CPM 的信任问题,
了解风险和最佳风险沟通、与 CPM 和 AI/ML 工具的交互以及
使用 CPM 赋予患者权力并促进共同决策。我们会比较
跨选区的回应。我们将利用我们的发现来制定以实践为导向的指南
面向基于 ML 的 CPM 的开发人员和用户。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Alan Goldstein其他文献
Benjamin Alan Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Alan Goldstein', 18)}}的其他基金
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10656387 - 财政年份:2022
- 资助金额:
$ 32.2万 - 项目类别:
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10451954 - 财政年份:2022
- 资助金额:
$ 32.2万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10605248 - 财政年份:2020
- 资助金额:
$ 32.2万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10192714 - 财政年份:2020
- 资助金额:
$ 32.2万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10192714 - 财政年份:2020
- 资助金额:
$ 32.2万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10414814 - 财政年份:2020
- 资助金额:
$ 32.2万 - 项目类别:
Multifactorial spatiotemporal analyses to evaluate environmental triggers and patient-level clinical characteristics of severe asthma exacerbations in children
多因素时空分析评估儿童严重哮喘急性发作的环境触发因素和患者水平的临床特征
- 批准号:
9884782 - 财政年份:2019
- 资助金额:
$ 32.2万 - 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:
10698195 - 财政年份:2017
- 资助金额:
$ 32.2万 - 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:
10523408 - 财政年份:2017
- 资助金额:
$ 32.2万 - 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
- 批准号:
8425985 - 财政年份:2013
- 资助金额:
$ 32.2万 - 项目类别:
相似海外基金
Advancing the Conversations Helpful for Awareness of Illness Trajectory (CHAT) Intervention
推进对话有助于提高疾病轨迹 (CHAT) 干预意识
- 批准号:
10668058 - 财政年份:2023
- 资助金额:
$ 32.2万 - 项目类别:
Leveraging a Natural Experiment to Determine the Effects of Integrated Palliative Care on Health Service Outcomes and Disparities in Parkinson Disease and Lewy Body Dementia
利用自然实验确定综合姑息治疗对帕金森病和路易体痴呆的卫生服务结果和差异的影响
- 批准号:
10701322 - 财政年份:2023
- 资助金额:
$ 32.2万 - 项目类别:
The Living Memory Home: Reducing Grief and Improving Relationships between Home-based Patients with ADRD and Their Family Caregivers
生活记忆之家:减少 ADRD 患者及其家庭护理人员的悲伤并改善他们之间的关系
- 批准号:
10665865 - 财政年份:2023
- 资助金额:
$ 32.2万 - 项目类别:
Improving Serious Illness Care for Underserved Populations: Patient and Caregiver Experience with Tele-Palliative Care
改善服务不足人群的重病护理:患者和护理人员的远程姑息护理体验
- 批准号:
10635741 - 财政年份:2023
- 资助金额:
$ 32.2万 - 项目类别:
The Promoting Resilience in Stress Management (PRISM) Intervention: a multi-site randomized controlled trial for Adolescents and Young Adults with advanced cancer
促进压力管理复原力 (PRISM) 干预:一项针对患有晚期癌症的青少年和年轻人的多中心随机对照试验
- 批准号:
10895146 - 财政年份:2023
- 资助金额:
$ 32.2万 - 项目类别: