Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
基本信息
- 批准号:10698195
- 负责人:
- 金额:$ 34.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-07 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:1 year old6 year oldAcademyAddressAgeAge MonthsAmericanAttitudeAutism DiagnosisBiological MarkersBirthBlue CrossBlue ShieldCaregiversCaringChildChildhoodClinicalClinical TrialsCollaborationsComputing MethodologiesDataData CollectionData ScienceDevelopmentDiagnosisDiagnosticEarly InterventionEarly identificationElectronic Health RecordEnvironmentEvaluationFutureGastroenterologistGoalsHealthHealth systemHumanInfantLearningLifeMachine LearningMedicaidMedicalMethodsModelingMonitorNatural Language ProcessingNatureNeurologistNorth CarolinaOphthalmologistOutcomeOutcome MeasureParticipantPatternPediatricsPositioning AttributePredictive ValuePrevalencePrimary CareProcessProviderPublic HealthQuestionnairesRecommendationResearchSamplingScreening procedureServicesTestingToddlerUniversitiesVisitWorkautism spectrum disorderautistic childrenbehavioral outcomebiomarker discoverybrain basedclinical careclinical decision supportdemographicsdesigndigital healthearly screeningfollow-upgastrointestinalhealth care settingshealth dataimplementation scienceimprovedimproved outcomeinnovationiterative designnovelpredictive modelingpredictive toolsprimary care settingprototyperoutine carescreeningsexsupport toolstoolusability
项目摘要
ABSTRACT – Project 2
The overall goal of the Duke Autism Center of Excellence (ACE) is to use a translational digital health and
computational approach to address the critical need for more effective autism screening tools, objective outcome
measures, and brain-based biomarkers that can be used in clinical trials with young autistic children. This Project
will develop and evaluate a novel digital health approach to autism screening. Universal autism screening is
recommended for children at 18 months. This is typically achieved via a caregiver questionnaire. However,
research has shown that a commonly used autism screening questionnaire has reduced accuracy when used in
real-world settings, such as primary care. By leveraging health data related to early medical conditions collected
as part of clinical care, Project 2 aims to develop an automatic, objective tool for autism prediction at 18 months
that can be implemented in primary care settings. We will use routinely collected health data to develop a
prediction model for autism and use the model to design a clinical decision support tool for providers that can be
integrated into pediatric primary care and includes actionable guidance regarding referrals and linkage to
services. We will first develop and validate a generalizable, off-the-shelf model to predict autism for use at 18
months of age using longitudinal claims data (Medicaid and Blue Cross Blue Shield) from a diverse sample of
children across North Carolina with continuous coverage from birth to age 6 years (N ~ 230,000) to predict
likelihood of an autism diagnosis (N ~ 6,000). We will then adapt the autism prediction model to the Duke
University Health System (DUHS) clinical environment and augment it with granular electronic health record
(EHR) data by using machine learning-based natural language processing to embed provider notes. Through
engagement with stakeholders both within and outside of DUHS and in collaboration with Project 1, we will use
the prediction model to design a clinical decision support prototype that could assist providers in making
appropriate and timely referrals. Through the design process, we will identify a set of key priority factors to
consider when choosing a clinical decision support for autism screening that are applicable across a broad range
of stakeholders in different health care settings. Finally, leveraging our robust data on early health encounters,
we will describe the nature and prevalence of patterns of medical conditions during early life. We will test the
specific hypothesis that gastrointestinal problems during early life are associated with higher rates of psychiatric
conditions by age 6.
摘要 – 项目 2
杜克大学自闭症卓越中心 (ACE) 的总体目标是利用转化型数字健康和
计算方法可满足对更有效的自闭症筛查工具、客观结果的迫切需求
措施以及可用于自闭症儿童临床试验的基于大脑的生物标志物。
将开发和评估一种新颖的数字健康方法来进行自闭症筛查。
建议 18 个月大的儿童使用。不过,这通常是通过看护者调查问卷来实现的。
研究表明,常用的自闭症筛查问卷在用于自闭症筛查时,准确性会降低。
现实世界的环境,例如初级保健,利用收集到的与早期医疗状况相关的健康数据。
作为临床护理的一部分,项目 2 旨在开发一种自动、客观的工具来预测 18 个月大的自闭症
我们将使用定期收集的健康数据来制定可在初级保健机构中实施的计划。
自闭症预测模型,并使用该模型为提供者设计临床决策支持工具,
纳入儿科初级保健,并包括有关转诊和联系的可行指导
我们将首先开发并验证一个通用的、现成的模型来预测 18 岁的自闭症。
使用来自不同样本的纵向索赔数据(医疗补助和蓝十字蓝盾)计算月龄
对北卡罗来纳州从出生到 6 岁连续覆盖的儿童 (N ~ 230,000) 进行预测
然后,我们将根据杜克大学的情况调整自闭症预测模型。
大学医疗系统 (DUHS) 临床环境并通过精细的电子健康记录对其进行增强
(EHR) 数据,使用基于机器学习的自然语言处理来嵌入提供者注释。
与 DUHS 内部和外部的利益相关者互动并与项目 1 合作,我们将使用
预测模型设计临床决策支持原型,可以帮助提供者做出
通过设计过程,我们将确定一组关键的优先因素。
在选择适用于广泛范围的自闭症筛查临床决策支持时要考虑
最后,利用我们关于早期健康遭遇的可靠数据,
我们将描述生命早期健康状况的性质和患病率。
具体假设是,生命早期的胃肠道问题与较高的精神病发病率有关
6岁之前的条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Alan Goldstein其他文献
Benjamin Alan Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Alan Goldstein', 18)}}的其他基金
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10656387 - 财政年份:2022
- 资助金额:
$ 34.1万 - 项目类别:
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10451954 - 财政年份:2022
- 资助金额:
$ 34.1万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10605248 - 财政年份:2020
- 资助金额:
$ 34.1万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10192714 - 财政年份:2020
- 资助金额:
$ 34.1万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10192714 - 财政年份:2020
- 资助金额:
$ 34.1万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10414814 - 财政年份:2020
- 资助金额:
$ 34.1万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10598693 - 财政年份:2020
- 资助金额:
$ 34.1万 - 项目类别:
Multifactorial spatiotemporal analyses to evaluate environmental triggers and patient-level clinical characteristics of severe asthma exacerbations in children
多因素时空分析评估儿童严重哮喘急性发作的环境触发因素和患者水平的临床特征
- 批准号:
9884782 - 财政年份:2019
- 资助金额:
$ 34.1万 - 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:
10523408 - 财政年份:2017
- 资助金额:
$ 34.1万 - 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
- 批准号:
8725658 - 财政年份:2013
- 资助金额:
$ 34.1万 - 项目类别:
相似国自然基金
3-6岁人工耳蜗植入儿童汉语句法习得机制
- 批准号:32371110
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3-6岁学龄前儿童碘膳食参考摄入量的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
3-6岁儿童情绪调节能力的追踪研究:亲子互动同步性与儿童气质的共同作用
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
3-6岁幼儿易怒发展的追踪研究:认知调节策略及神经机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
儿童期(0-6岁)端粒动力学的影响因素及其健康效应的前瞻性队列研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
相似海外基金
A Translational Research Approach to Healthy Technology Usage in Language-Minority Families with Young Children
有幼儿的语言少数群体家庭健康技术使用的转化研究方法
- 批准号:
10822222 - 财政年份:2023
- 资助金额:
$ 34.1万 - 项目类别:
Reading Bees: Adapting and Testing a Mobile App Designed to Empower Families to Read more Interactively with Children in Distinct Geographical and Cultural Contexts
阅读蜜蜂:调整和测试一款移动应用程序,旨在让家庭能够在不同的地理和文化背景下与孩子进行更多互动阅读
- 批准号:
10729773 - 财政年份:2023
- 资助金额:
$ 34.1万 - 项目类别:
The National Couples Health and Time Use Stress Biology Study (NCHAT-BIO): Biobehavioral Pathways to Population Health Disparities in Sexual Minorities
全国夫妻健康和时间使用压力生物学研究 (NCHAT-BIO):性别少数人口健康差异的生物行为途径
- 批准号:
10742339 - 财政年份:2023
- 资助金额:
$ 34.1万 - 项目类别:
Effects of circadian desynchrony during adolescent alcohol exposure on immediate and long-term risk of alcohol addiction: role of sleep homeostasis and stress signaling
青少年酒精暴露期间昼夜节律不同步对酒精成瘾的近期和长期风险的影响:睡眠稳态和压力信号的作用
- 批准号:
10673146 - 财政年份:2022
- 资助金额:
$ 34.1万 - 项目类别:
Implementing Evidence-based Behavioral Skills in Pediatric Oral Healthcare Providers
在儿科口腔保健提供者中实施循证行为技能
- 批准号:
10504763 - 财政年份:2022
- 资助金额:
$ 34.1万 - 项目类别: