Development of 3D Printed Synthetic Bone Graft Containing Small Molecules for Sequential Activation of Hedgehog and Hypoxia Signaling for Treatment of Nonunion Fractures

开发含有小分子的 3D 打印合成骨移植物,用于顺序激活 Hedgehog 和缺氧信号,用于治疗骨不连骨折

基本信息

  • 批准号:
    10413956
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT Bone injuries are a major health problem. There are 7.9 million bone fractures sustained annually in the U.S. Healing is impaired in about 10% of these fractures with seriously delayed union or non-union, causing morbidity for patients and enormous healthcare costs. While strategies such as bone grafting, synthetic polymers, low intensity pulsed ultrasound and electromagnetic fields, growth factors and cell therapy are currently being used or investigated to promote bone healing, each of these therapies have their own advantages and disadvantages in terms of cost, effectiveness and safety. Thus, there is a compelling need to find novel effective therapies that promote fracture healing. Vitamin C and thyroid hormone (TH) are known to play key roles in endochondral bone formation (EBF). Our recent studies on the molecular pathways for TH and vitamin C actions revealed evidence that sequential activation of hedgehog and hypoxia signaling pathways contribute to key steps involved in EBF. Our focus in this project is on the therapeutic utility and mechanisms of action of two small molecules, SAG 21k and IOX2, that activate hedgehog and hypoxia signaling pathways to promote EBF at the fracture site. In this proof of concept study, we propose to deliver SAG21K and IOX2 locally using 3D printed fibrin gel/β-tricalcium phosphate (βTCP) scaffolds at the defect site to provide mechanical strength and minimize unwanted side effects on other tissues. A clinically relevant segmental defect model in the femoral midshaft in which a 2.5-mm defect is stabilized by an intramedullary threaded rod with attached plastic spacers that does not heal over a prolonged period will be used. Three aims are proposed. In aim 1, we will 3D print fibrin gel/β-tricalcium phosphate (βTCP) scaffold preparations containing SAG21k and IOX2 and evaluate the suitability of these preparations for delivery of effective concentrations of SAG21k and IOX2 at the optimal therapeutic time window for activation of hedgehog and hypoxia signaling at the fracture site by measurement of downstream signaling targets of these signaling pathways by immunohistochemistry (IHC) and real time PCR in the fracture callus of mice at different times. In aim 2, we will test the hypothesis that sequential activation of hedgehog followed by hypoxia signaling will be effective in promoting healing of femoral segmental defects. We will compare the efficacy of bone healing with SAG21k and IOX2 with that of autografts, a gold standard used for healing of nonunion defects. We will use validated microCT, bone strength and histological measurements to evaluate the fracture healing phenotype. Therapeutic effectiveness of SAG21k/IOX2 combination therapy will be studied using aged and diabetic mice with impaired fracture healing. In aim 3, we will test the hypothesis that sequential activation of sonic hedgehog and hypoxia signaling induces bone healing by promoting direct conversion of chondrocytes-to-osteoblasts. Fracture callus chondrocytes will be labeled with TdTomato by genetic inducible fate mapping approaches and the fate of labeled chondrocytes to form osteoblasts in the bony callus will be evaluated. The role of chondrocytes in bone healing will be evaluated after chondrocyte ablation with diphtheria toxin in chondrocyte-specific Col10α1-CreER;iDTR mice. In terms of clinical relevance, we believe that the potential impact of understanding the utility of SAG21k and IOX2 in bone healing and their mechanisms of action is huge, and therefore the work proposed in this project is significant.
抽象的 骨损伤是一个主要的健康问题,美国每年有 790 万例骨折。 约 10% 的骨折存在严重延迟愈合或不愈合的情况,导致患者发病和 而骨移植、合成聚合物、低强度脉冲超声和等策略则带来巨大的医疗费用。 目前正在使用或研究电磁场、生长因子和细胞疗法来促进骨愈合, 这些疗法在成本、有效性和安全性方面都有各自的优点和缺点。 迫切需要找到促进骨折愈合的新型有效疗法。 我们最近对 TH 分子途径的研究已知在软骨内骨形成 (EBF) 中发挥关键作用。 维生素 C 的作用揭示了刺猬蛋白和缺氧信号通路的连续激活有助于 EBF 涉及的关键步骤 我们在这个项目中的重点是两种小药物的治疗效用和作用机制。 SAG 21k 和 IOX2 分子可激活刺猬信号通路和缺氧信号通路,从而促进骨折部位的 EBF。 在这项概念验证研究中,我们建议使用 3D 打印纤维蛋白凝胶/β-三钙在本地提供 SAG21K 和 IOX2 缺损部位的磷酸盐 (βTCP) 支架可提供机械强度并最大限度地减少对其他部位的不良副作用 股骨中轴的临床相关节段缺损模型,其中 2.5 毫米的缺损由一个稳定的支架固定。 将使用带有长期无法愈合的塑料垫片的髓内螺纹杆。 在目标 1 中,我们将 3D 打印含有纤维蛋白凝胶/β-磷酸三钙 (βTCP) 支架制剂。 SAG21k 和 IOX2 并评估这些制剂对于递送有效浓度的 SAG21k 的适用性 和IOX2在最佳治疗时间窗激活刺猬和骨折部位缺氧信号传导 通过免疫组织化学 (IHC) 和实时测量这些信号通路的下游信号靶点 在目标 2 中,我们将测试不同时间小鼠骨折愈伤组织中连续激活的假设。 刺猬之后的缺氧信号将有效促进股骨节段缺损的愈合。 将 SAG21k 和 IOX2 的骨愈合功效与自体移植物的骨愈合功效进行比较,自体移植物是用于骨​​愈合的金标准 我们将使用经过验证的 microCT、骨强度和组织学测量来评估骨折。 SAG21k/IOX2 联合疗法的治疗效果将使用老年人和 骨折愈合受损的糖尿病小鼠 在目标 3 中,我们将测试声波连续激活的假设。 刺猬蛋白和缺氧信号通过促进软骨细胞直接转化为成骨细胞来诱导骨愈合。 骨折愈伤组织软骨细胞将通过遗传诱导命运图谱方法用 TdTomato 进行标记,并确定其命运 将评估软骨细胞在骨愈合中的作用。 将在软骨细胞特异性 Col10α1-CreER;iDTR 小鼠中用白喉毒素消融软骨细胞后进行评估。 就临床相关性而言,我们认为了解 SAG21k 和 IOX2 在骨中的效用的潜在影响 治愈及其作用机制是巨大的,因此该项目中提出的工作意义重大。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUBBURAMAN MOHAN其他文献

SUBBURAMAN MOHAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUBBURAMAN MOHAN', 18)}}的其他基金

Development of 3D Printed Synthetic Bone Graft Containing Small Molecules for Sequential Activation of Hedgehog and Hypoxia Signaling for Treatment of Nonunion Fractures
开发含有小分子的 3D 打印合成骨移植物,用于顺序激活 Hedgehog 和缺氧信号,用于治疗骨不连骨折
  • 批准号:
    10664885
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Development of 3D Printed Synthetic Bone Graft Containing Small Molecules for Sequential Activation of Hedgehog and Hypoxia Signaling for Treatment of Nonunion Fractures
开发含有小分子的 3D 打印合成骨移植物,用于顺序激活 Hedgehog 和缺氧信号,用于治疗骨不连骨折
  • 批准号:
    10664885
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Development of 3D Printed Synthetic Bone Graft Containing Small Molecules for Sequential Activation of Hedgehog and Hypoxia Signaling for Treatment of Nonunion Fractures
开发含有小分子的 3D 打印合成骨移植物,用于顺序激活 Hedgehog 和缺氧信号,用于治疗骨不连骨折
  • 批准号:
    10253962
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10337066
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Thyroid hormone receptor β1 agonist therapy for the treatment of bone marrow adiposity in aging and obesity
甲状腺激素受体β1激动剂疗法治疗衰老和肥胖症中的骨髓肥胖
  • 批准号:
    9893266
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10514614
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
  • 批准号:
    10115993
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
ShEEP Request for FUJIFILM VisualSonics Vevo 3100 Imaging System
ShEEP 请求 FUJIFILM VisualSonics Vevo 3100 成像系统
  • 批准号:
    9905989
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
ShEEP request for IVIS SpectrumCT Imaging System
SheEEP 请求 IVIS SpectrumCT 成像系统
  • 批准号:
    9794239
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Role and Mechanism of Claudin-11 Action and Signaling in Bone
Claudin-11 作用和信号传导在骨中的作用和机制
  • 批准号:
    9764134
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
  • 批准号:
    82303710
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
  • 批准号:
    82302368
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
  • 批准号:
    42307523
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
  • 批准号:
    82302204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
  • 批准号:
    82373004
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Development of 3D Printed Synthetic Bone Graft Containing Small Molecules for Sequential Activation of Hedgehog and Hypoxia Signaling for Treatment of Nonunion Fractures
开发含有小分子的 3D 打印合成骨移植物,用于顺序激活 Hedgehog 和缺氧信号,用于治疗骨不连骨折
  • 批准号:
    10664885
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Toward tissue engineering of facet cartilage
面向小面软骨的组织工程
  • 批准号:
    10571696
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Development of Ultrasound Imaging Phantoms Appropriate for Quantification of Muscle Fascicle Architecture and Mechanical Properties
开发适合量化肌肉束结构和机械性能的超声成像模型
  • 批准号:
    10427254
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Toward tissue engineering of facet cartilage
面向小面软骨的组织工程
  • 批准号:
    10398793
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Development of 3D Printed Synthetic Bone Graft Containing Small Molecules for Sequential Activation of Hedgehog and Hypoxia Signaling for Treatment of Nonunion Fractures
开发含有小分子的 3D 打印合成骨移植物,用于顺序激活 Hedgehog 和缺氧信号,用于治疗骨不连骨折
  • 批准号:
    10664885
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了