A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
基本信息
- 批准号:10394924
- 负责人:
- 金额:$ 49.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAdoptedAffectAgingAirAir MovementsAmericanAnimal ModelApoptosisArchitectureBasement membraneBiochemicalBiologyBiomechanicsBiophysicsCell modelCellsCellular MorphologyChemical ExposureChemicalsChimeric ProteinsCicatrixClinicalCommunitiesConnective TissueConsensusCuesCustomDataDecision MakingDepositionDevelopmentDiseaseEngineeringEpithelialEpithelial CellsExtracellular MatrixFGF2 geneFibrinogenFibroblastsFibrosisFunctional disorderFutureGene ExpressionGrowth FactorHealthHumanHydrogelsIn SituIn VitroInterventionLamina PropriaLarynxLigationLungMechanical StressMechanicsMesenchymalMesenchymal Stem CellsMethodologyMethodsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMonitorMotionMultipotent Stem CellsMuscleMyofibroblastOperative Surgical ProceduresOrganParentsPathologicPermeabilityPharmaceutical PreparationsPharmacologyPharmacotherapyPhenotypePhonationPhysiologicalPhysiologyPliabilityPredispositionProcessPropertyProtein KinaseResearchSideSignal TransductionStratified EpitheliumStratified Squamous EpitheliumStructureTGFB1 geneTestingTherapeuticTissue MicroarrayTissue ModelTissuesTracheaTreatment EfficacyVoicebasecohesioncytokinedesignefficacious treatmentepithelial injuryfasudilfibrogenesisfundamental researchgraphenehealinghuman tissueimprovedinduced pluripotent stem cellinhibitorinterfacialinterstitialmechanical propertiesmimeticsminiaturizepreventreal time monitoringrepairedrhosensorsoundspatiotemporaltissue injuryvocal cordvocalis musclewound healing
项目摘要
Project Summary
Voice is produced when the vocal folds are driven into a wave-like motion by the airstream from the trachea,
converting aerodynamic energy and airflow into acoustic energy in the form of sound. Each vocal fold consists
of a pliable vibratory layer of connective tissue, known as the lamina propria (LP), sandwiched between a muscle
and a stratified squamous epithelium (EP). Numerous environmental, mechanical and pathological factors can
damage this delicate tissue, resulting in vocal fold scarring that affects millions of Americans with limited
treatment options. Although there is a general consensus on the pathophysiology of vocal fold scarring, the
molecular and cellular mechanisms that control unremitting fibrosis remain poorly understood. Studies on other
fibrotic diseases suggest that fibroblasts, epithelial cells and the interstitial matrix are active players in
fibrogenesis. This project aims to engineer a reliable, physiologically relevant in vitro tissue model that can be
used to investigate vocal fold development, health, and disease, and more importantly, to facilitate the
development and testing of new treatment options. We propose to develop a microengineered organ chip that
integrates the epithelial and mesenchymal cells in a tissue-mimetic configuration with built-in airflow to stimulate
phonation. Using the microfluidic model, we will investigate how damage to the epithelium initiates fibrosis, how
the fibrotic extracellular matrix (ECM) sustains fibrosis and how myofibroblast proliferation and matrix deposition
continue unabated. Finally, we will calibrate our model with an antifibrotic growth factor that has shown efficacy
in treating vocal fold scarring, and test a promising pharmacological inhibitor that has not been previously tested
in the context of vocal fold scarring. Highly efficient bioorthogonal tetrazine ligation will be used to establish the
initial LP matrix surrounding healthy fibroblasts and to introduce compositional and mechanical alterations that
promote fibroblast activation. Pluripotent and multipotent stem cells will be guided to differentiate into vocal fold-
like epithelial cells and fibroblasts by adopting a development paradigm and through systematic manipulation of
the engineered microenvironment. Piezoresistive strain sensors embedded in the sidewalls of the microfluidic
channels will be used to monitor tissue stiffness and EP permeability in situ. The microengineered tissue model
will be characterized in terms of cell phenotype, microstructure, mechanical properties and physiological function.
For comparison purposes, a stand-alone, human-sized vocal fold model will be developed and characterized
employing methodologies established in the laryngology field. Data generated from this project should
significantly impact fundamental research related to vocal fold scarring and provide critical information on
therapeutic decision-making in the near future.
项目概要
当声带被来自气管的气流驱动成波浪状运动时,就会产生声音,
将空气动力能和气流转化为声音形式的声能。每个声带由
结缔组织的柔韧振动层,称为固有层 (LP),夹在肌肉之间
和复层鳞状上皮(EP)。许多环境、机械和病理因素可以
损伤这种脆弱的组织,导致声带疤痕,影响数以百万计的美国人
治疗方案。尽管对声带疤痕的病理生理学存在普遍共识,但
控制持续纤维化的分子和细胞机制仍然知之甚少。其他方面的研究
纤维化疾病表明成纤维细胞、上皮细胞和间质基质在
纤维发生。该项目旨在设计一个可靠的、生理相关的体外组织模型,该模型可以
用于研究声带发育、健康和疾病,更重要的是,促进
开发和测试新的治疗方案。我们建议开发一种微工程器官芯片
将上皮细胞和间充质细胞整合在组织模拟结构中,并具有内置气流以刺激
发声。使用微流体模型,我们将研究上皮损伤如何引发纤维化,如何
纤维化细胞外基质 (ECM) 维持纤维化以及肌成纤维细胞增殖和基质沉积的方式
继续不减。最后,我们将使用已显示功效的抗纤维化生长因子来校准我们的模型
治疗声带疤痕,并测试一种以前未测试过的有前途的药物抑制剂
在声带疤痕的背景下。将使用高效生物正交四嗪连接来建立
初始 LP 基质围绕健康成纤维细胞,并引入成分和机械变化,
促进成纤维细胞活化。多能干细胞将被引导分化为声带——
像上皮细胞和成纤维细胞一样,通过采用开发范式并通过系统操作
工程微环境。嵌入微流体侧壁的压阻应变传感器
通道将用于原位监测组织硬度和 EP 渗透性。微工程组织模型
将在细胞表型、微观结构、机械性能和生理功能方面进行表征。
为了进行比较,将开发一个独立的、人体大小的声带模型并对其进行表征
采用喉科领域建立的方法。该项目生成的数据应
显着影响与声带疤痕相关的基础研究,并提供关键信息
在不久的将来做出治疗决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinqiao Jia其他文献
Xinqiao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinqiao Jia', 18)}}的其他基金
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10400243 - 财政年份:2021
- 资助金额:
$ 49.67万 - 项目类别:
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10546502 - 财政年份:2021
- 资助金额:
$ 49.67万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10209183 - 财政年份:2015
- 资助金额:
$ 49.67万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10604269 - 财政年份:2015
- 资助金额:
$ 49.67万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9028226 - 财政年份:2015
- 资助金额:
$ 49.67万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10209183 - 财政年份:2015
- 资助金额:
$ 49.67万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9193072 - 财政年份:2015
- 资助金额:
$ 49.67万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8360585 - 财政年份:2011
- 资助金额:
$ 49.67万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8168491 - 财政年份:2010
- 资助金额:
$ 49.67万 - 项目类别:
相似国自然基金
探索间质机械力通过影响SMAD4/JNK/PIN1功能轴对胰腺癌糖代谢重编程的调控机制
- 批准号:82372906
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
色氨酸代谢产物5-HIAA通过干预AHR-NFATc1途径影响RA骨破坏的机制研究
- 批准号:82302049
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群通过短链脂肪酸代谢影响妊娠期糖尿病发病风险的分子流行病学研究
- 批准号:82304218
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SUV39H2通过铁死亡影响乳腺癌转移的作用及机制研究
- 批准号:82303121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠罗斯拜瑞氏菌通过丙酸失活酪氨酸激酶JAK2影响STAT3磷酸化阻抑UC肠道纤维化的分子机制研究
- 批准号:82370539
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
- 批准号:
10659299 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Speech Intervention via Telepractice for Children with Repaired Cleft Palate : Randomized Controlled Trial and Assessment of Speech Production and Perception Skills
通过远程练习对腭裂修复儿童进行言语干预:言语产生和感知技能的随机对照试验和评估
- 批准号:
10280767 - 财政年份:2021
- 资助金额:
$ 49.67万 - 项目类别:
Understanding the effects of listening effort on sentence processing and memory in sensorineural hearing loss: Evidence from simultaneous electrophysiology and pupillometry
了解听力努力对感音神经性听力损失的句子处理和记忆的影响:来自同步电生理学和瞳孔测量的证据
- 批准号:
10523120 - 财政年份:2021
- 资助金额:
$ 49.67万 - 项目类别: