Ultrasound neurostimulation with piezoelectric nanoparticles
压电纳米粒子超声神经刺激
基本信息
- 批准号:10312713
- 负责人:
- 金额:$ 7.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseAnimalsBariumBrainBrain regionCalciumCalcium SignalingCell Culture TechniquesCell surfaceCellsCerebrospinal FluidChargeCommunitiesDataDevelopmentDiseaseElectric StimulationElectrodesElectromyographyEmerging TechnologiesEnvironmentEpilepsyExposure toFocused UltrasoundFundingGeneticGlutamatesGoalsHippocampus (Brain)Implanted ElectrodesIn VitroIndividualIon ChannelLabelLeadMapsMeasurementMeasuresMethodsModificationMotorMotor CortexNanotechnologyNeurodegenerative DisordersNeuronsNeurosciencesNeurosciences ResearchParkinson DiseasePhysiologic pulsePlayPreparationRattusResearchResearch PersonnelRiskRoleSliceSprague-Dawley RatsStimulusSurfaceTechniquesTechnologyTransducersUltrasonic TherapyUltrasonic TransducerUltrasonic waveUltrasonicsUnited States National Institutes of Healthexperimental studyextracellularglutamatergic signalingin vivominimally invasivenanoparticlenanoparticle deliveryneural stimulationneuroregulationnovel therapeutic interventionoptical fiberpressurerelating to nervous systemresponsetoolultrasoundvoltagevoltage gated channel
项目摘要
Project Summary
Neural stimulation is a standard tool in neuroscience, allowing researchers to specifically study the role individual
or groups of neurons play in a larger interconnected circuit. Despite its widespread applicability, however, there
remains no reliable method to noninvasively stimulate a specific set of neurons. Current approaches rely on
implanted electrodes, genetic modification, and/or invasive optical fibers. These not only restrict the long-term
applicability of these technologies, but also may influence the measurements themselves. Thus, a reliable
method for noninvasive neural stimulation could advance the field of neuroscience and enable new therapeutic
approaches for conditions where neural stimulation has shown promise. We have developed a method where
ultrasound energy is used to excite piezoelectric nanoparticles. Upon exposure to the energy, the piezoelectric
nanoparticles build up an electric charge on their surface. We hypothesize that this enables them to trigger
voltage sensitive ion channels in the neurons. Our in vitro data indicate that ultrasound stimulation of calcium
and glutamate activity only reliably occurs when piezoelectric nanoparticles are present. In this proposal, we
seek to take the first steps to applying the technology in vivo. The overall goal of this project is to establish that
the piezoelectric nanoparticles can be used to enable ultrasound stimulation of neurons in brain slices and in
vivo. We will first identify ideal ultrasound stimulation parameters and nanoparticle concentrations by using brain
slice preparations. Then we will apply these ideal parameters to living rats. We will stimulate the motor cortex
and use a combination of local field potentials and electromyography to measure the resulting neural stimulation.
Overall, this study will result in demonstrating that piezoelectric nanoparticles can be harnessed for reliable
ultrasonic neurostimulation in vivo.
项目概要
神经刺激是神经科学中的标准工具,使研究人员能够专门研究个体的作用
或神经元组在更大的互连电路中发挥作用。尽管其应用广泛,但
仍然没有可靠的方法来无创地刺激一组特定的神经元。目前的方法依赖于
植入电极、基因改造和/或侵入性光纤。这些不仅限制了长期
这些技术的适用性,也可能影响测量本身。因此,一个可靠的
非侵入性神经刺激方法可以推动神经科学领域的发展并实现新的治疗方法
神经刺激已显示出希望的条件的方法。我们开发了一种方法,其中
超声波能量用于激发压电纳米颗粒。暴露于能量后,压电
纳米粒子在其表面积聚电荷。我们假设这使他们能够触发
神经元中的电压敏感离子通道。我们的体外数据表明超声刺激钙
谷氨酸活性只有在存在压电纳米颗粒时才会可靠地发生。在这个提案中,我们
寻求在体内应用该技术的第一步。该项目的总体目标是建立
压电纳米颗粒可用于对脑切片和脑组织中的神经元进行超声刺激
体内。我们将首先通过使用大脑确定理想的超声刺激参数和纳米粒子浓度
切片制剂。然后我们将把这些理想的参数应用到活体老鼠身上。我们将刺激运动皮层
并结合局部场电位和肌电图来测量由此产生的神经刺激。
总的来说,这项研究将证明压电纳米粒子可以用于可靠的
体内超声神经刺激。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey P. Luke其他文献
TUNE INTO ZERO’s SOUND SOLUTIONS
聆听 ZERO 的声音解决方案
- DOI:
10.3390/s23052592 - 发表时间:
2023-02-26 - 期刊:
- 影响因子:0
- 作者:
Carolyn L. Bayer;Geoffrey P. Luke;Stanislav Y. Emelianov - 通讯作者:
Stanislav Y. Emelianov
Spectroscopic Photoacoustic Imaging for the Detection of Lymph Node Metastases
用于检测淋巴结转移的光谱光声成像
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Geoffrey P. Luke;K. Sokolov;S. Emelianov - 通讯作者:
S. Emelianov
A Multiaperture Bioinspired Sensor With Hyperacuity
具有超敏锐度的多孔径仿生传感器
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.3
- 作者:
Geoffrey P. Luke;C. Wright;S. Barrett - 通讯作者:
S. Barrett
Three-Dimensional Image Reconstruction Using Compressed Interferometric Detection of Photoacoustic Waves
使用光声波压缩干涉检测重建三维图像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
John E. Heggland;Geoffrey P. Luke - 通讯作者:
Geoffrey P. Luke
Snap-valve cerebral shunt design for intracranial pressure operation and ultrasound visualization.
用于颅内压操作和超声可视化的卡压阀脑分流器设计。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.2
- 作者:
S. Mitchell;G. Grangard;W. Kahouli;C. Dalldorf;A. Crain;Eldred Lee;A. Hamlin;L. Feeney;H. Johnstone;Geoffrey P. Luke;S. G. Diamond;David F. Bauer - 通讯作者:
David F. Bauer
Geoffrey P. Luke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey P. Luke', 18)}}的其他基金
Multiplex Ultrasound Imaging for the Detection of Head and Neck Lymph Node Micrometastases
用于检测头颈部淋巴结微转移的多重超声成像
- 批准号:
10870266 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Remote Neurostimulation with Ultrasound-activated Piezoelectric Nanoparticles
使用超声波激活压电纳米粒子进行远程神经刺激
- 批准号:
9766304 - 财政年份:2018
- 资助金额:
$ 7.81万 - 项目类别:
Super-Localization Ultrasound Imaging with Targeted Laser-activated Nanodetectors
使用靶向激光激活纳米探测器进行超定位超声成像
- 批准号:
9267468 - 财政年份:2016
- 资助金额:
$ 7.81万 - 项目类别:
Molecular Photoacoustic Imaging for the Detection of Sentinel Lymph Node Metastas
用于检测前哨淋巴结转移的分子光声成像
- 批准号:
8473052 - 财政年份:2012
- 资助金额:
$ 7.81万 - 项目类别:
Molecular Photoacoustic Imaging for the Detection of Sentinel Lymph Node Metastas
用于检测前哨淋巴结转移的分子光声成像
- 批准号:
8317207 - 财政年份:2012
- 资助金额:
$ 7.81万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 7.81万 - 项目类别: