Automated Mental Health Referral System
自动心理健康转介系统
基本信息
- 批准号:10155997
- 负责人:
- 金额:$ 14.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescentAgeAgreementAlgorithmsAppointmentAttitudeCaringChi-Square TestsChildClassificationClinicalCollectionComputer softwareCounselingDataData CollectionData SetDimensionsEnvironmentEstheticsFeedbackFemaleFocus GroupsFutureGenderHealth PersonnelHealth ResourcesHealthcareHumanImpairmentIndividualInfrastructureInstitutesInstitutionInsuranceIntakeInternetKnowledgeLearning DisordersMachine LearningMeasuresMental HealthMental disordersMindModelingPathologyPatientsPersonsPhasePopulationPrivacyProcessProfessional counselorProtocols documentationProviderPsychiatristPsychologistRecording of previous eventsResearchRiskServicesSmall Business Technology Transfer ResearchSocial WorkersSourceStudentsSystemTechnology AssessmentTestingTimeTrainingUniversitiesUpdateVisitWait TimeYouthbasebiomedical referral centercollegecommercializationcomorbiditydesignfunctional statushealth assessmenthigher educationimprovedinnovationmachine learning algorithmmalenovelprovider networksquality assuranceresponsesatisfactionsocial stigmasoftware as a servicesuccesstelehealthtooluniversity studentusabilityyoung adult
项目摘要
This proposal addresses a significant barrier to obtaining treatment for college-age
youth with mental disorders. Many college-age youth with impairing mental disorders
remain untreated because of concerns about stigma and privacy, inconvenience and wait times, and
because universities are often unable to service all such students. Also, of critical importance,
when referral for treatment is implemented, it is without regard to the person's pathology,
because of the erroneous assumption that treatment need not be tailored to the
individual. This proposal aims to address this critical clinical issue. We advance that a
sophisticated automated online referral system would resolve all of these problems, but there is no
expert-trained system for psychiatric referrals. We propose to automate the referral process,
designed for college-age youth, by bridging online, mental health assessments and curated,
up-to-date, mental health provider networks. To this end, the non-profit Child Mind
1nstitute is partnering with the for-profit MiResource. Assessment expertise is provided
by the Child Mind Institute, which treats children and adolescents with mental health
disorders, conducts mental health research, has acquired large assessment datasets, has in-house
expertise in mental health assessment, and through its MATTER lab has developed novel assessment
technologies such as the Mindlogger data collection and assessment platform. Referral
infrastructure is provided by MiResource, a software-as-a-service solution designed to help
universities connect students to local mental health providers. The MATTER lab and MiResource
will develop an automated online assessment and referral platform that uses expert-trained
machine learning to provide users with personalized referrals for mental health care.
Expert referrals will be based on the six dimensions of the level of Care Utilization System (risk
of harm, functional status, comorbidity, environment, treatment history, and attitude)
applied to college students' responses to mental health assessments. 1n Phase 1, we will (1-1)
build mental health assessments into the Mindlogger platform, (1-2) build an expert
referral collection interface, and (1-3) set up a machine learning pipeline for training and
testing an updatable classification model for automated clinically appropriate, personalized
referrals. 1n Phase 11, we will build, refine, and clinically validate our
product for commercialization. Specifically, we will (11-1) validate the Phase I framework on a
university population, (11-2) integrate Mindlogger's assessments into MiResource, and (11-3)
conduct usability and quality assurance tests of the new Mindlogger plus MiResource platform,
to get feedback about issues related to accessibility, relevance, accuracy, and esthetics,
and incorporate solutions in response to this feedback into a final version.
该提案解决了大学年龄获得治疗的重大障碍
患有精神障碍的青少年。许多大学生患有精神障碍
由于担心耻辱和隐私、不便和等待时间而仍未得到治疗,以及
因为大学往往无法为所有此类学生提供服务。此外,至关重要的是,
当实施转诊治疗时,不考虑该人的病理情况,
因为错误的假设认为治疗不需要根据具体情况进行调整
个人。该提案旨在解决这一关键的临床问题。我们提出,
复杂的自动在线推荐系统可以解决所有这些问题,但目前还没有
经过专家培训的精神病转诊系统。我们建议自动化推荐流程,
专为大学年龄的青少年设计,通过在线、心理健康评估和策划,
最新的心理健康提供者网络。为此,非营利组织Child Mind
1nstitute 正在与营利性 MiResource 合作。提供评估专业知识
儿童心理研究所 (Child Mind Institute) 负责治疗儿童和青少年的心理健康问题
疾病,进行心理健康研究,获得了大量的评估数据集,拥有内部
心理健康评估方面的专业知识,并通过其物质实验室开发了新颖的评估
Mindlogger 数据收集和评估平台等技术。推荐
基础设施由 MiResource 提供,这是一种软件即服务解决方案,旨在帮助
大学将学生与当地的心理健康提供者联系起来。 MATTER 实验室和 MiResource
将开发一个自动化的在线评估和推荐平台,该平台使用经过专家培训的
机器学习为用户提供个性化的心理健康护理推荐。
专家推荐将基于护理利用系统水平的六个维度(风险
危害、功能状态、合并症、环境、治疗史和态度)
应用于大学生对心理健康评估的反应。 1n 第 1 阶段,我们将 (1-1)
将心理健康评估纳入 Mindlogger 平台,(1-2) 建立专家
推荐收集接口,以及(1-3)建立机器学习管道以进行培训和
测试可更新的分类模型,以实现自动化、临床适用、个性化
推荐。 1n 第 11 阶段,我们将构建、完善并临床验证我们的
产品用于商业化。具体来说,我们将 (11-1) 在
大学人口,(11-2) 将 Mindlogger 的评估整合到 MiResource 中,以及 (11-3)
对新的 Mindlogger plus MiResource 平台进行可用性和质量保证测试,
获取有关可访问性、相关性、准确性和美观问题的反馈,
并将针对此反馈的解决方案纳入最终版本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arno Klein其他文献
Arno Klein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arno Klein', 18)}}的其他基金
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
8363449 - 财政年份:2011
- 资助金额:
$ 14.78万 - 项目类别:
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
8171071 - 财政年份:2010
- 资助金额:
$ 14.78万 - 项目类别:
Mindboggling Shape Analysis and Identification
令人难以置信的形状分析和识别
- 批准号:
8079670 - 财政年份:2009
- 资助金额:
$ 14.78万 - 项目类别:
Mindboggling Shape Analysis and Identification
令人难以置信的形状分析和识别
- 批准号:
7882529 - 财政年份:2009
- 资助金额:
$ 14.78万 - 项目类别:
Mindboggling Shape Analysis and Identification
令人难以置信的形状分析和识别
- 批准号:
7737395 - 财政年份:2009
- 资助金额:
$ 14.78万 - 项目类别:
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
7955682 - 财政年份:2009
- 资助金额:
$ 14.78万 - 项目类别:
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
7724372 - 财政年份:2008
- 资助金额:
$ 14.78万 - 项目类别:
MINDBOGGLE AUTOMATED ANATOMICAL BRAIN LABELING WITH MULTIPLE ATLASES
使用多个图谱进行令人难以置信的自动大脑解剖标记
- 批准号:
7627736 - 财政年份:2007
- 资助金额:
$ 14.78万 - 项目类别:
相似国自然基金
推拿“舒筋调骨”干预青少年脊柱侧弯“肌肉力学-椎间载荷”平衡机制研究
- 批准号:82374607
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于数字表型青少年自杀行为转化风险测度及虚拟现实矫正干预研究
- 批准号:72304244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青少年焦虑的预测和干预:基于跨通道恐惧泛化视角
- 批准号:32300928
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
视屏活动和CaMKII m6A甲基化修饰影响青少年抑郁症状的纵向研究
- 批准号:82304168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 14.78万 - 项目类别:
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 14.78万 - 项目类别:
Neurodevelopment of executive function, appetite regulation, and obesity in children and adolescents
儿童和青少年执行功能、食欲调节和肥胖的神经发育
- 批准号:
10643633 - 财政年份:2023
- 资助金额:
$ 14.78万 - 项目类别: