Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
基本信息
- 批准号:10554348
- 负责人:
- 金额:$ 66.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBlack PopulationsCOVID-19COVID-19 patientCOVID-19 surveillanceCOVID-19 testCaringCessation of lifeClinicClinicalContact TracingContainmentCoronavirusDataData CollectionData SourcesDetectionDialysis patientsDialysis procedureEarly DiagnosisEnsureGoalsHealthcareHemodialysisHispanic PopulationsIndividualInvestigationKidneyLaboratoriesLifeLocationMathematicsMeasuresMedicalMinorityModelingNatureNetwork-basedPathway AnalysisPathway interactionsPatientsPatternProceduresProviderRecommendationResearch InstituteRiskRisk ReductionSARS-CoV-2 exposureSARS-CoV-2 infectionSARS-CoV-2 transmissionSafetySamplingSerologySerology testSerumShelter facilitySourceSpace ModelsStatistical ModelsSymptomsTimeTravelValidationasymptomatic COVID-19comorbiditydata resourcedetection platformfeature extractionhigh dimensionalityhigh riskhigh risk populationhuman old age (65+)improvedinnovationmachine learning methodmathematical modelmetabolomicsmultimodal datamultiple data sourcesnovelpatient safetypersonalized carepredictive modelingpreventprocedure safetyprospectiverecurrent neural networksensorsocioeconomicsstatistical and machine learningsurveillance datatooltransmission processwearable device
项目摘要
Abstract
With older age and multiple comorbidities, dialysis patients are at high risk for serious complications, even death,
from COVID-19. There is a large disproportionate representation of minorities, especially Blacks and Hispanics.
Over 85% of hemodialysis patients travel three times a week to dialysis facilities to receive life-sustaining
treatments and cannot shelter in place. There is a critical need to characterize COVID-19 transmission pathways
in dialysis patients and clinics, identify potential coronavirus carriers, and develop procedures to curb the spread.
With regular medical encounters, a large amount of data has been collected for each patient over time. These
data have not been fully utilized for COVID-19 prediction and control in dialysis clinics. In this proposal, we seek
to leverage demographic, clinical, treatment, laboratory, socioeconomic, serological, metabolomic, wearable and
machine-integrated sensors, and COVID-19 surveillance data to develop mathematical and statistical models
and implement them in a large number of dialysis clinics. The mathematical and statistical modeling using
multiple data resources will help us understand how COVID-19 spread in dialysis facilities, identify potential
COVID-19 patients before symptoms appear, and identify potential asymptomatic COVID-19 patients. We will
develop novel mathematical and statistical models that fully utilize the high dimensional multimodal data
available to us and other dialysis providers. We capitalize on the intrinsic advantages of hemodialysis clinics to
implement and validate the proposed prediction models. We firmly believe that this cross-disciplinary effort will
improve patients’ and staff’s safety while delivering high-quality, individualized care to a high-risk population.
抽象的
由于年龄较大和多种合并症,透析患者面临严重并发症甚至死亡的高风险,
少数族裔的比例过高,尤其是黑人和西班牙裔。
超过 85% 的血液透析患者每周 3 次前往透析机构接受维持生命的服务
无法就地避难,因此迫切需要确定 COVID-19 传播途径的特征。
在透析患者和诊所中,识别潜在的冠状病毒携带者,并制定遏制传播的程序。
通过定期的医疗接触,随着时间的推移,每个患者都会收集大量数据。
数据尚未充分用于透析诊所的 COVID-19 预测和控制。在本提案中,我们寻求。
利用人口统计学、临床、治疗、实验室、社会经济、血清学、代谢组学、可穿戴和
机器集成传感器和 COVID-19 监测数据来开发数学和统计模型
并使用数学和统计建模在大量透析诊所中实施。
多个数据资源将帮助我们了解 COVID-19 如何在透析设施中传播,识别潜在的
我们将在症状出现之前识别出潜在的无症状 COVID-19 患者。
开发充分利用高维多模态数据的新颖的数学和统计模型
我们和其他透析提供商可以利用血液透析诊所的固有优势来实现这一目标。
我们坚信,这种跨学科的努力将会实现并验证所提出的预测模型。
提高患者和工作人员的安全,同时为高危人群提供高质量、个性化的护理。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Testing of worn face mask and saliva for SARS-CoV-2.
- DOI:10.3389/fpubh.2023.1237512
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Wang, Xiaoling;Thwin, Ohnmar;Haq, Zahin;Dong, Zijun;Tisdale, Lela;Fuentes, Lemuel Rivera;Grobe, Nadja;Kotanko, Peter
- 通讯作者:Kotanko, Peter
SARS-CoV-2 Seropositivity Rates in Patients and Clinical Staff in New York City Dialysis Facilities: Association With the General Population.
- DOI:10.1016/j.xkme.2021.02.010
- 发表时间:2021-07
- 期刊:
- 影响因子:3.9
- 作者:Thwin O;Grobe N;Tapia Silva LM;Ye X;Zhang H;Wang Y;Kotanko P
- 通讯作者:Kotanko P
Time-to-Event Analysis with Unknown Time Origins via Longitudinal Biomarker Registration.
通过纵向生物标记注册进行未知时间起源的事件时间分析。
- DOI:10.1080/01621459.2021.2023552
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Wang,Tianhao;Ratcliffe,SarahJ;Guo,Wensheng
- 通讯作者:Guo,Wensheng
Arterial oxygen saturation and hypoxemia in hemodialysis patients with COVID-19.
- DOI:10.1093/ckj/sfab019
- 发表时间:2021-04
- 期刊:
- 影响因子:4.6
- 作者:Preciado P;Tapia Silva LM;Ye X;Zhang H;Wang Y;Waguespack P;Kooman JP;Kotanko P
- 通讯作者:Kotanko P
SARS-CoV-2 neutralizing antibody response after three doses of mRNA1273 vaccine and COVID-19 in hemodialysis patients.
- DOI:10.3389/fneph.2022.926635
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Wang, Xiaoling;Han, Maggie;Kotanko, Peter
- 通讯作者:Kotanko, Peter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENSHENG GUO其他文献
WENSHENG GUO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENSHENG GUO', 18)}}的其他基金
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10274119 - 财政年份:2020
- 资助金额:
$ 66.63万 - 项目类别:
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10320487 - 财政年份:2020
- 资助金额:
$ 66.63万 - 项目类别:
Semi-Parametric Subgroup Analysis for Longitudinal Data with Applications to Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Study
纵向数据的半参数亚组分析及其在慢性盆腔疼痛 (MAPP) 研究的多学科方法中的应用
- 批准号:
10348142 - 财政年份:2019
- 资助金额:
$ 66.63万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8708158 - 财政年份:2013
- 资助金额:
$ 66.63万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8897406 - 财政年份:2013
- 资助金额:
$ 66.63万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8419665 - 财政年份:2013
- 资助金额:
$ 66.63万 - 项目类别:
相似海外基金
Addressing Surgical Disparities at the Root; Working to improve diversity in the surgical workforce
从根本上解决手术差异;
- 批准号:
10639471 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
- 批准号:
10890393 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 66.63万 - 项目类别: