Automatic Statistical Time-Frequency Analysis
自动统计时频分析
基本信息
- 批准号:6327454
- 负责人:
- 金额:$ 26.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-02-01 至 2003-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Non-stationary time series (i.e., time
series with statistical properties that vary over time) arise in many areas of
neuroscience research and clinical practice. For example, the spectral
properties of electroencephalograms (EEGs) vary with brain state, and
frequently this variation is of central clinical or scientific importance.
Existing methods of spectra analysis assume that a time series is a realization
of a stationary random process. These methods can be extended to non-stationary
processes using windowed Fourier transforms, but the number and size of the
windows must be chosen subjectively. We propose to develop improved, automatic
statistical methods for analysis of non-stationary multivariate time series. We
will evaluate the methods in applications to realistic simulated data and to
real multi-channel EEG data required from patients with brain disorders. We
will compare results from our automatic methods with the clinical judgments.
Our specific aims are to develop, evaluate, apply, implement, and distribute
the following statistical methods:
(1) an estimator of the time-varying power spectrum of a univariate random
process; (2) estimators of the time-varying spectral density matrix,
coherences, and phase spectra of a multivariate random process; (3)
time-frequency principal component analysis; (4) time-frequency filters; (5)
cycle-spinning to reduce bias due to the dyadic structure of our estimators;
and (6) univariate and multivariate processes that are smooth in both time and
frequency domains.
Our first proposed statistical methods are based on the Smooth Localized
complex Exponential (SLEX) transform, which provides a rich selection of
orthogonal transforms. The structure of the SLEX transform allows us to use the
computationally efficient Best Basis algorithm of Coifman and Wickerhauser to
automatically select a particular transform, which represents a segmentation of
a non-stationary time series into approximately stationary intervals.
Our second proposed approach (Aim 6) takes a new path. Unlike the traditional
approaches that focus on modeling the Periodiograms, we propose to model the
transfer function directly as a smooth function in both frequency and time
using smoothing splines and to use a signal-plus-noise model. By modeling the
transfer function directly, we alloy simultaneous smoothing in time and
frequency within the Fourier transformation. Unlike the periodiogram, the
transfer function preserves the phase information, and therefore the
time-varying cross-spectra, coherence, and phase can be directly calculated
from the transfer functions.
描述(申请人提供):非平稳时间序列(即时间序列
统计特性随着时间而变化的系列在许多领域的许多领域出现
神经科学研究和临床实践。例如,光谱
脑电图(EEG)的特性随脑状态而变化,并且
这种变化通常具有核心临床或科学意义。
现有的光谱分析方法假定时间序列是实现
一个固定的随机过程。这些方法可以扩展到非平稳
使用窗口的傅立叶变换的过程,但是
必须主观选择窗口。我们建议开发改进的自动
非平稳多元时间序列分析的统计方法。我们
将评估应用程序中对现实的模拟数据的方法和
真正的多通道脑电图数据需要脑部疾病患者。我们
将将我们自动方法的结果与临床判断进行比较。
我们的具体目的是开发,评估,应用,实施和分发
以下统计方法:
(1)单变量随机的时变功率谱的估计器
过程; (2)随时间变化的光谱密度矩阵的估计器,
相干和多元随机过程的相光谱; (3)
时频主成分分析; (4)时频过滤器; (5)
循环旋转以减少由于估计器的二元结构而减少偏差;
(6)单变量和多变量过程,这些过程在时间和时间均光滑
频域。
我们提出的第一个统计方法基于平滑的本地化
复杂的指数(SLEX)变换,可提供丰富的选择
正交变换。 Slex变换的结构使我们能够使用
Coifman和Wickerhauser的计算有效的最佳基础算法
自动选择一个特定的转换,该转换代表
一个非平稳时间序列分为大约固定间隔。
我们提出的第二种方法(AIM 6)采取了新的道路。与传统不同
侧重于建模周期图的方法,我们建议建模
在频率和时间上直接传输功能作为平滑函数
使用平滑光环并使用信号加上噪声模型。通过建模
直接传输函数,我们合金同时平滑时,
傅立叶变换内的频率。与时期图不同,
传输函数保留了相位信息,因此
可以直接计算时变的跨光谱,连贯性和相位
从传输功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENSHENG GUO其他文献
WENSHENG GUO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENSHENG GUO', 18)}}的其他基金
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10554348 - 财政年份:2020
- 资助金额:
$ 26.17万 - 项目类别:
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10274119 - 财政年份:2020
- 资助金额:
$ 26.17万 - 项目类别:
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10320487 - 财政年份:2020
- 资助金额:
$ 26.17万 - 项目类别:
Semi-Parametric Subgroup Analysis for Longitudinal Data with Applications to Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Study
纵向数据的半参数亚组分析及其在慢性盆腔疼痛 (MAPP) 研究的多学科方法中的应用
- 批准号:
10348142 - 财政年份:2019
- 资助金额:
$ 26.17万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8708158 - 财政年份:2013
- 资助金额:
$ 26.17万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8897406 - 财政年份:2013
- 资助金额:
$ 26.17万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8419665 - 财政年份:2013
- 资助金额:
$ 26.17万 - 项目类别:
相似海外基金
Nipype: Dataflows for Reproducible Biomedical Research
Nipype:可重复生物医学研究的数据流
- 批准号:
9053094 - 财政年份:2016
- 资助金额:
$ 26.17万 - 项目类别:
BRAIN IMAGE SEGMENTATION, COMPARISON, AND MEASUREMENT
脑图像分割、比较和测量
- 批准号:
6529848 - 财政年份:2000
- 资助金额:
$ 26.17万 - 项目类别:
BRAIN IMAGE SEGMENTATION, COMPARISON, AND MEASUREMENT
脑图像分割、比较和测量
- 批准号:
6394753 - 财政年份:2000
- 资助金额:
$ 26.17万 - 项目类别:
BRAIN IMAGE SEGMENTATION, COMPARISON, AND MEASUREMENT
脑图像分割、比较和测量
- 批准号:
6616121 - 财政年份:2000
- 资助金额:
$ 26.17万 - 项目类别: