Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
基本信息
- 批准号:8897406
- 负责人:
- 金额:$ 29.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:Biological MarkersCessation of lifeDataData AnalysesDecision MakingDecision ModelingDiseaseEnd stage renal failureEventFailureGoalsHealthInformation SystemsJointsKidneyKidney TransplantationLinear ModelsLinkMethodsModelingMotivationNon-linear ModelsOutcomePatientsPatternPennsylvaniaProcessPublic DomainsRecording of previous eventsSeriesShapesSurvival AnalysisTheoretical StudiesTimeTransplant RecipientsTransplantationUnited Network for Organ SharingUnited StatesUniversitiesVaginal delivery procedureWood materialWorkbaseflexibilityliver transplantationmethod developmentnon-Gaussian modelnovelsimulationsoftware developmentstatisticsuser friendly software
项目摘要
DESCRIPTION (provided by applicant): Semiparametric joint models for longitudinal biomarkers and time to event data The goal of this project is to develop novel statistics methods to jointly model longitudinal biomarker trajectories and time to event data. The proposed methods are motivated and will be applied to three major applications: 1) liver transplant and kidney transplant available through the United Network for Organ Sharing (UNOS), 2) the end stage renal disease (ESRD) data available through the United States Renal Data System (USRDS), and 3) the Vaginal birth after a prior cesarean (VBAC) data collected at the University of Pennsylvania. The main motivation comes from the fact that biomarkers are usually the surrogates of the underlying disease process and need to be treated as surrogate outcomes in modeling the time to event data, and the trajectories of the biomarkers usually require nonparametric models allowing flexible patterns over time, such as smooth curves, shape-registered curves, and branching curves. Another motivation is that in predicting the event such as death, the cumulative effects of the biomarkers may be more appropriate than the concurrent values, and therefore we propose to combine the ideas of functional data analysis and survival analysis. We will first develop the functional accelerated failure time (AFT) models and their join models with functional mixed effects models. We then extend this framework to include non-Gaussian longitudinal biomarkers. The third specific aims will develop a series of nonlinear functional mixed effect models for curve registration and branching curves, and their joint models with time to event data. Each specific aim includes methods development, theoretical studies, empirical simulations and applications. We will also develop a user-friendly software package that includes all the proposed features and post it to public domain.
描述(由申请人提供):纵向生物标志物和事件时间数据的半参数联合模型该项目的目标是开发新的统计方法来联合建模纵向生物标志物轨迹和事件时间数据。所提出的方法是有动力的,将应用于三个主要应用:1)通过联合器官共享网络(UNOS)提供的肝移植和肾移植,2)通过美国肾病研究所提供的终末期肾病(ESRD)数据数据系统 (USRDS),以及 3) 宾夕法尼亚大学收集的先前剖腹产后阴道分娩 (VBAC) 数据。主要动机来自这样一个事实,即生物标志物通常是潜在疾病过程的替代物,在对事件数据的时间进行建模时需要将其视为替代结果,并且生物标志物的轨迹通常需要非参数模型,允许随时间变化的灵活模式,例如平滑曲线、形状记录曲线和分支曲线。另一个动机是,在预测死亡等事件时,生物标志物的累积效应可能比并发值更合适,因此我们建议将功能数据分析和生存分析的思想结合起来。我们将首先开发功能加速失效时间(AFT)模型及其与功能混合效应模型的连接模型。然后,我们扩展该框架以包括非高斯纵向生物标志物。第三个具体目标是开发一系列用于曲线配准和分支曲线的非线性函数混合效应模型,以及它们与事件时间数据的联合模型。每个具体目标包括方法开发、理论研究、实证模拟和应用。我们还将开发一个用户友好的软件包,其中包括所有建议的功能,并将其发布到公共领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENSHENG GUO其他文献
WENSHENG GUO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENSHENG GUO', 18)}}的其他基金
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10554348 - 财政年份:2020
- 资助金额:
$ 29.57万 - 项目类别:
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10274119 - 财政年份:2020
- 资助金额:
$ 29.57万 - 项目类别:
Early detection, containment, and management of COVID-19 in dialysis facilities using multi-modal data sources
使用多模式数据源在透析设施中早期检测、遏制和管理 COVID-19
- 批准号:
10320487 - 财政年份:2020
- 资助金额:
$ 29.57万 - 项目类别:
Semi-Parametric Subgroup Analysis for Longitudinal Data with Applications to Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Study
纵向数据的半参数亚组分析及其在慢性盆腔疼痛 (MAPP) 研究的多学科方法中的应用
- 批准号:
10348142 - 财政年份:2019
- 资助金额:
$ 29.57万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8708158 - 财政年份:2013
- 资助金额:
$ 29.57万 - 项目类别:
Semi-parametric joint models for longitudinal and time to event data
纵向和事件时间数据的半参数联合模型
- 批准号:
8419665 - 财政年份:2013
- 资助金额:
$ 29.57万 - 项目类别:
相似海外基金
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 29.57万 - 项目类别:
Identifying correlates of risk for future tuberculosis disease progression in children (INTREPID)
确定儿童未来结核病进展风险的相关性 (INTREPID)
- 批准号:
10637036 - 财政年份:2023
- 资助金额:
$ 29.57万 - 项目类别:
Point-of-Care Diagnosis of Esophageal Cancer in LMICs
中低收入国家食管癌的即时诊断
- 批准号:
10649166 - 财政年份:2023
- 资助金额:
$ 29.57万 - 项目类别:
Defining the molecular and radiologic phenotype of progressive RA-ILD
定义进行性 RA-ILD 的分子和放射学表型
- 批准号:
10634344 - 财政年份:2023
- 资助金额:
$ 29.57万 - 项目类别:
Robust detection of atrophy over short intervals in AD and FTLD
在 AD 和 FTLD 中短时间间隔内对萎缩进行稳健检测
- 批准号:
10633960 - 财政年份:2023
- 资助金额:
$ 29.57万 - 项目类别: