Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center

营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心

基本信息

项目摘要

Abstract – Overall AIMINGS Center The vision of this proposed Artificial Intelligence, Modeling, and Informatics, for Nutrition Guidance and Systems (AIMINGS) Center is to implement computational and data science approaches and tools to advance nutrition for precision health in a way that accounts for the complex systems involved. Many existing data sets include extraneous data, making them difficult to analyze at best, and at worst, prone to generating misleading or biased insights. Thus, there is a need to for new approaches, methods, and tools to collapse and distill data to make them more Artificial Intelligence (AI)-ready and ready for a range of different analyses. This coincides with the goal of Project 1: to develop and utilize The Data Distiller for Precision Nutrition, a set of approached and tools that can collapse and distill nutrition-relevant data to create datasets that are AI- ready and ready for a range of other analyses. The first objective of the Nutrition for Precision Health (NPH) program is to “examine individual differences observed in response to different diets by studying the interactions between diet, genes, proteins, microbiome, metabolism and other individual contextual factors.” Given the type of missing data we face in nutrition, and the importance of establishing causal relationships rather than correlations, there is a need for new imputation methods. To address this, Project 2, the Causal Relationship Disentangler, will introduce new approaches for handling missing data while preserving causal structure. Learning how to transfer causal knowledge and doing so with missing data is critical for realizing the potential of nutrition for precision health. The NPH program’s other objectives are “to use AI to develop algorithms to predict individual responses to foods and dietary patterns,” and “to validate algorithms for clinical application.” This requires bringing different causal pathways together to understand how they interact. Agent-based models (ABMs) can help and serve as "virtual laboratories" to predict how different people may respond to a particular diet under different circumstances. Therefore, the goal of Project 3 (The Virtual Human for Precision Nutrition) is to develop an ABM tool that can help better understand and predict an individual's response to food and dietary patterns, while bringing together and accounting for the interactions between genetic, physiological, and behavioral factors. However, focusing on the individual alone will not be enough to address all aspects of NPH. Therefore, the Virtual Public Health Precision Nutrition Laboratory (Project 4) will develop ABMs that represent and account for the systems outside individuals such as their social, economic, and built environments. An Administrative and Coordination Core will oversee all operations and a pilot program. A Data Systems Core (DSC) will leverage the substantial computing resources of CUNY, West Point, and the Department of Defense to create a flexible cloud-based architecture for data flow and a collaborative workspace. A Computational Systems Core will provide resources and personnel to support the DSC and tool development/deployment.
摘要 - 整体目标中心 这种提议的人工智能,建模和信息学的愿景,营养指导和 系统(目标)中心是实施计算和数据科学方法和工具以推进 精确健康的营养以涉及复杂系统的方式。许多现有数据集 包括无关的数据,使它们充其量很难分析,最坏的情况很容易产生误导 或有偏见的见解。这是需要新方法,方法和工具来崩溃和提炼数据 使他们更加人工智能(AI),并准备好进行一系列不同的分析。这重合 以项目1的目的为目标:要开发和利用数据蒸馏器进行精确营养,一组 接近和可以崩溃和提炼与营养相关的数据的工具以创建AI-AI- 准备好并准备进行一系列其他分析。精确健康营养(NPH)的第一个目标 程序是“通过研究来检查对不同饮食观察到的个体差异 饮食,基因,蛋白质,微生物组,代谢和其他个人情境因素之间的相互作用。” 鉴于我们在营养中面临的缺失数据的类型以及建立因果关系的重要性 而不是相关性,需要新的插补方法。为了解决这个问题,项目2,因果关系 关系解开,将引入新的方法来处理丢失的数据,同时保存数据 因果结构。学习如何转移因果知识并使用丢失的数据进行此操作至关重要 实现营养潜力以进行精确健康。 NPH程序的其他目标是“使用 AI开发算法以预测对食物和饮食模式的个人反应”和“验证 临床应用算法。“这需要将不同的因果途径融合在一起,以了解如何 他们互动。基于代理的模型(ABM)可以帮助并充当“虚拟实验室”,以预测不同的不同 在不同情况下,人们可能会对特定的饮食做出反应。因此,项目3的目标( 用于精确营养的虚拟人)是开发一种ABM工具,该工具可以帮助更好地理解和 预测个人对食物和饮食模式的反应,同时将 对于遗传,物理和行为因素之间的相互作用。但是,专注于 单独的个人不足以解决NPH的各个方面。因此,虚拟公共卫生 精密营养实验室(项目4)将开发代表和解释的ABM 在个人,社会,经济和建筑环境等个人之外的系统。行政 协调核心将监督所有操作和试点计划。数据系统核心(DSC)将 利用CUNY,West Point和国防部的大量计算资源来创建 一个基于云的灵活体系结构,用于数据流和协作工作区。计算系统 核心将提供资源和人员来支持DSC和工具开发/部署。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Research gaps and opportunities in precision nutrition: an NIH workshop report
  • DOI:
    10.1093/ajcn/nqac237
  • 发表时间:
    2022-09-02
  • 期刊:
  • 影响因子:
    7.1
  • 作者:
    Lee,Bruce Y.;Ordovas,Jose M.;Martinez,Marie F.
  • 通讯作者:
    Martinez,Marie F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruce Y Lee其他文献

Bruce Y Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruce Y Lee', 18)}}的其他基金

Simulating the Spread and Control of Multiple MDROs Across a Network of Different Nursing Homes
模拟多个 MDRO 在不同疗养院网络中的传播和控制
  • 批准号:
    10549492
  • 财政年份:
    2023
  • 资助金额:
    $ 129.75万
  • 项目类别:
Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center
营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心
  • 批准号:
    10386497
  • 财政年份:
    2022
  • 资助金额:
    $ 129.75万
  • 项目类别:
Administration and Coordination Core (ACC)
行政和协调核心 (ACC)
  • 批准号:
    10386498
  • 财政年份:
    2022
  • 资助金额:
    $ 129.75万
  • 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
  • 批准号:
    10552681
  • 财政年份:
    2022
  • 资助金额:
    $ 129.75万
  • 项目类别:
AIMDMB Shared Resource Core
AIMDMB 共享资源核心
  • 批准号:
    10552692
  • 财政年份:
    2022
  • 资助金额:
    $ 129.75万
  • 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
  • 批准号:
    10386502
  • 财政年份:
    2022
  • 资助金额:
    $ 129.75万
  • 项目类别:
AIMDMB Shared Resource Core
AIMDMB 共享资源核心
  • 批准号:
    10386504
  • 财政年份:
    2022
  • 资助金额:
    $ 129.75万
  • 项目类别:
Administration and Coordination Core (ACC)
行政和协调核心 (ACC)
  • 批准号:
    10552676
  • 财政年份:
    2022
  • 资助金额:
    $ 129.75万
  • 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
  • 批准号:
    10552687
  • 财政年份:
    2022
  • 资助金额:
    $ 129.75万
  • 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
  • 批准号:
    10386501
  • 财政年份:
    2022
  • 资助金额:
    $ 129.75万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 129.75万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 129.75万
  • 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
  • 批准号:
    10723819
  • 财政年份:
    2023
  • 资助金额:
    $ 129.75万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 129.75万
  • 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
  • 批准号:
    10798514
  • 财政年份:
    2023
  • 资助金额:
    $ 129.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了