Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
基本信息
- 批准号:10386502
- 负责人:
- 金额:$ 24.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-19 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptive BehaviorsAddressAdherenceAdoptionAffectAreaArtificial IntelligenceBehaviorBiological ProcessChronicComplexComputer ModelsDataData SetDecision MakingDietEatingEconomicsEnvironmentEthical IssuesExposure toFamilyFeedbackFoodFood AccessFriendsGoalsHealthIndividualInformaticsIntakeInterventionLaboratoriesLos AngelesMaintenanceModelingNew YorkNutrientNutritionalPathway interactionsPatternPersonsPhenotypePhysical environmentPoliciesPrecision HealthProcessPublic HealthRecommendationSamplingSkinSocial EnvironmentSocial NetworkSystemTestingTimebasebuilt environmentcomputerized toolsdietaryfood environmentfood insecurityinnovationneglectnovelnutritionprecision nutritionprogramsresponsesocialtoolvirtualvirtual humanvirtual laboratory
项目摘要
Abstract-Project 4: Virtual Public Health Precision Nutrition Laboratory
When it comes to better understanding and addressing precision nutrition, it is important to consider
what happens "above the skin" as well as under. Factors operating “above the skin” represent impacts from
outside an individual’s body that can influence their nutrition and health. This includes facets of the social, built,
and broader macro-environments that an individual is exposed to, such as influences from friend/family social
networks, food access, and local policies. Evidence shows that factors outside a person can affect their diet
and their capacity for dietary change. Studies also show how factors outside a person get “under the skin,”
affecting biological processes that matter to nutrient processing and long-term chronic health conditions. At the
same time, biological processes and health conditions can affect factors outside a person. Neglecting factors
outside a person may limit the impact of precision nutrition due to an incomplete understanding of mechanisms
and inaccurate intervention approaches that introduce bias and worsen disparities. Thus, precision nutrition
should consider how diets fit with phenotypes that are defined based on individual-level factors as well as
social, built, and macro-environments people are exposed to in order to narrow the intervention-implementation
gap. Nutrition recommendations may need to be tailored to the contexts in which people live and eat, and the
contexts in which people live and eat may need to be intervened upon to support adherence to dietary
recommendations. Therefore, the goal of this proposed project is to develop and utilize the Project 3:
The Virtual Human for Precision Nutrition (Project 4), which like the Virtual Human for Precision
Nutrition (Project 3) could serve as a "virtual laboratory" to test different diets on different
types/groups of people and better understand and predict the resulting responses. The difference is that
while the Virtual Human agent-based model (ABM) will focus on the individual and everything under their skin,
the Virtual Public Health Precision Nutrition Laboratory will incorporate the key factors and processes outside
the individual. This will include the person's exposure to social, economic, and built environments. These
different influences on dietary behaviors form feedback loops and interactions that require the model to
represent autonomous decision making and complex, adaptive behaviors. Aim 1 will develop ABMs of sample
New York State (NYS) and Los Angeles (LA) areas to simulate how physical environments may affect different
people's nutrient intake, dietary behaviors, ability to follow particular diets, and resulting health over time. Aim
2 will incorporate into the ABMs computational representations of different agents' social environments, to
simulate how these affect their diet, nutrient intake, adherence to dietary recommendations, and resulting
health over time. Aim 3 will demonstrate how the ABM can be used to evaluate how much different peoples’
diets may need to be tailored to their social, economic, and built environment and what other policies and
interventions may be needed to facilitate adherence to a given diet.
抽象项目4:虚拟公共卫生精确营养实验室
当涉及到更好的理解和解决精确营养时,重要的是要考虑
发生在“皮肤上方”以及下面发生的情况。操作“高于皮肤”的因素代表
在个人的身体外,可以影响其营养和健康。这包括社交,建造的方面
个人所面临的更广泛的宏观环境,例如朋友/家庭社会的影响
网络,食品获取和当地政策。有证据表明,一个人以外的因素会影响他们的饮食
以及他们的饮食变化能力。研究还表明了一个人外部因素如何“在皮肤下”,
影响对营养加工和长期慢性健康状况至关重要的生物学过程。在
同时,生物过程和健康状况会影响一个人之外的因素。忽视因素
由于对机制的不完全理解,在一个人外部可能会限制精确营养的影响
以及不准确的干预方法,引入了偏见和差异更严重的差异。那,精确营养
应该考虑如何根据个人级别的因素以及
社交,建筑和宏观环境人们会暴露于范围缩小干预措施的范围
差距。营养建议可能需要根据人们生活和饮食的环境进行量身定制
人们可能需要干预人们生活和饮食的环境以支持遵守饮食
建议。因此,该拟议项目的目标是开发和利用项目3:
精确营养的虚拟人(项目4),它像虚拟人类一样精确
营养(项目3)可以用作“虚拟实验室”,以测试不同的饮食
人类类型/群体,更好地理解和预测由此产生的响应。区别在于
虽然虚拟人类代理模型(ABM)将专注于个人和皮肤下的一切,但
虚拟公共卫生精确营养实验室将结合外部的关键因素和流程
个人。这将包括该人接触社会,经济和建筑环境。这些
对饮食行为的不同影响形成了反馈回路和需要模型的相互作用
代表自主决策和复杂的自适应行为。 AIM 1将发展样本的ABM
纽约州(纽约州)和洛杉矶(洛杉矶)地区,以模拟物理环境如何影响不同
人们的营养摄入量,饮食行为,遵循特定饮食的能力以及随着时间的流逝而产生的健康。目的
2将纳入不同代理人社会环境的ABMS计算表示
模拟这些如何影响他们的饮食,营养摄入量,遵守饮食建议以及由此产生的
随着时间的流逝。 AIM 3将证明如何使用ABM评估多少不同的人
饮食可能需要根据其社会,经济和建筑环境以及其他政策以及哪些其他政策量身定制
可能需要采取干预措施来促进遵守给定饮食。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Y Lee其他文献
Bruce Y Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Y Lee', 18)}}的其他基金
Simulating the Spread and Control of Multiple MDROs Across a Network of Different Nursing Homes
模拟多个 MDRO 在不同疗养院网络中的传播和控制
- 批准号:
10549492 - 财政年份:2023
- 资助金额:
$ 24.25万 - 项目类别:
Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center
营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心
- 批准号:
10386497 - 财政年份:2022
- 资助金额:
$ 24.25万 - 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
- 批准号:
10552681 - 财政年份:2022
- 资助金额:
$ 24.25万 - 项目类别:
Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center
营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心
- 批准号:
10552675 - 财政年份:2022
- 资助金额:
$ 24.25万 - 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
- 批准号:
10552687 - 财政年份:2022
- 资助金额:
$ 24.25万 - 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
- 批准号:
10386501 - 财政年份:2022
- 资助金额:
$ 24.25万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Examining the Effectiveness of the Early Start Denver Model in Community Programs serving Young Autistic Children
检查早期开始丹佛模式在为自闭症儿童服务的社区项目中的有效性
- 批准号:
10725999 - 财政年份:2023
- 资助金额:
$ 24.25万 - 项目类别:
Online EZY Tai Chi: Simplified 8-Form Program for Individuals with Intellectual Disabilities
在线 EZY 太极拳:针对智力障碍人士的简化 8 式课程
- 批准号:
10620736 - 财政年份:2022
- 资助金额:
$ 24.25万 - 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
- 批准号:
10552687 - 财政年份:2022
- 资助金额:
$ 24.25万 - 项目类别:
Online EZY Tai Chi: Simplified 8-Form Program for Individuals with Intellectual Disabilities
在线 EZY 太极拳:针对智力障碍人士的简化 8 式课程
- 批准号:
10477642 - 财政年份:2022
- 资助金额:
$ 24.25万 - 项目类别:
Improving Preschool Outcomes by Addressing Maternal Depression in Head Start
通过提前解决母亲抑郁症问题来改善学前教育成果
- 批准号:
10543380 - 财政年份:2022
- 资助金额:
$ 24.25万 - 项目类别: