Hydrogen peroxide in endothelial function and dysfunction

过氧化氢在内皮功能和功能障碍中的作用

基本信息

  • 批准号:
    10543765
  • 负责人:
  • 金额:
    $ 44.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

The proposed studies will use new biosensors and novel chemogenetic approaches to identify the molecular mechanisms whereby reactive oxygen species (ROS) regulate nitric oxide (NO) signaling pathways in the vascular endothelium. The proposed studies build on recent work in which we used chemogenetics to develop a new animal model of cardiomyopathy caused by oxidative stress. Here we plan to expand this chemogenetic approach to develop a new experimental program to study endothelial dysfunction and hypertension. Many studies have implicated oxidative stress in endothelial dysfunction and hypertension, yet the underlying molecular mechanisms remain incompletely understood. Low levels of the stable ROS hydrogen peroxide (H2O2) modulate NO-dependent physiological responses, while higher ROS levels are associated with hypertension. The proposed experiments exploit recent advances in chemogenetic and biosensor technologies to identify the mechanisms underlying the transition from physiological H2O2 signaling to the development of hypertension and other vascular disease states associated with pathological oxidative stress. We will pursue multispectral imaging experiments that will simultaneously analyze H2O2, NO and Ca2+ using highly selective and sensitive HyPer7, geNOp, and GECO biosensors. These studies will establish the mechanisms whereby purinergic P2Y2 receptors modulate H2O2-, Ca2+-, and NO-dependent endothelial responses that control blood pressure. Hemodynamic shear stress leads to eNOS activation and to increases in endothelial ROS that can promote both physiological as well as pathophysiological responses. We found that physiological laminar shear stress preferentially increases H2O2 in the endothelial cell nucleus, while pathological oscillatory shear stress increases H2O2 more in the cell cytosol. We used a chemogenetic approach to generate H2O2 in endothelial cells, using novel recombinant constructs expressing a yeast D-amino acid oxidase (DAAO) that robustly produces H2O2. The recombinant yeast DAAO is quiescent since vascular cells contain L- but not D-amino acids. H2O2 can be generated by adding D-alanine to cells expressing recombinant DAAO. Our studies showed that H2O2 generated in the endothelial cell nucleus activates Nrf2-modulated transcripts, whereas generation of H2O2 in the cytosol principally increases NF-kB-dependent transcripts. These differential transcriptional responses establish a causal role for H2O2 and provide a strong connection between chemogenetic approaches and endothelial pathophysiology. Studying in vitro, ex vivo, and in vivo models, we propose to extend these studies from cultured human endothelial cells (Aim 1) to the investigation of arterial preparations and transgenic mice expressing DAAO in the endothelium (Aim 2). This experimental program may lead to the development of a new “chemogenetic” animal model of hypertension. These studies will use powerful new cell imaging approaches to test the hypothesis that perturbations in intracellular H2O2 metabolism modulate endothelial responses both in the normal vasculature and in hypertension, and in other vascular disease states caused by oxidative stress.
拟议的研究将使用新的生物传感器和新型的化学发生方法来鉴定分子 活性氧(ROS)调节一氧化氮(NO)信号通路的机制 血管内皮。拟议的研究以最新的工作为基础,我们使用化学遗传学来发展 由氧化应激引起的一种新的心肌病动物模型。在这里,我们计划扩大这种化学生成 开发新的实验计划来研究内皮功能障碍和高血压的方法。 许多研究已经在内皮功能障碍和高血压中实施了氧化物应激,但基础 分子机制仍然不完全理解。低水平的稳定的ROS过氧化氢(H2O2) 调节无依赖性物理反应,而较高的ROS水平与高血压有关。 提出的实验利用了化学发生和生物传感器技术的最新进展,以鉴定 从物理H2O2信号转移到高血压和高血压发展的基础机制 其他血管疾病状态与病理氧化物胁迫有关。我们将追求多光谱成像 只需使用高选择性和敏感的Hyper7,可以简单地分析H2O2,NO和Ca2+的实验, Genop和Geco生物传感器。这些研究将建立嘌呤能P2Y2受体的机制 调节控制血压的H2O2-,Ca2+ - 和无依赖性内皮反应。 血液动力学剪切应力会导致eNOS激活并增加内皮ROS,可以促进 生理学和病理生理反应。我们发现生理层流剪应力 优先增加内皮细胞核中H2O2,而病理振荡剪切应力增加 细胞胞质中的H2O2更多。我们使用化学遗传方法在内皮细胞中生成H2O2,使用 表达酵母D-氨基酸氧化酶(DAAO)的新型重组构建体可稳健地产生H2O2。 重组酵母Daao是静止的,因为血管细胞含有L-但不含D-氨基酸。 H2O2可以 通过将D-丙氨酸添加到表达重组DAAO的细胞中产生。我们的研究表明H2O2产生了 在内皮细胞核中,激活NRF2调节的转录本,而在细胞质中产生H2O2 主要增加NF-KB依赖性转录本。这些差分转录响应建立了 H2O2的因果作用,并在化学发生方法与内皮之间提供了牢固的联系 病理生理学。在体外研究,体内和体内模型,我们建议从培养的 人内皮细胞(目标1)对动脉制剂的投资和表达的转基因小鼠的投资 Daao在内皮中(AIM 2)。这个实验计划可能会导致新的发展 高血压的“化学发生”动物模型。这些研究将使用强大的新细胞成像方法 检验以下假设:细胞内H2O2代谢中的扰动调节内皮反应均 正常的脉管系统和高血压,以及其他血管疾病状态,由氧化应激引起。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Michel其他文献

Thomas Michel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Michel', 18)}}的其他基金

Hydrogen peroxide in endothelial function and dysfunction
过氧化氢在内皮功能和功能障碍中的作用
  • 批准号:
    10320952
  • 财政年份:
    2021
  • 资助金额:
    $ 44.22万
  • 项目类别:
Dynamic tissue-specific modulation of redox stress using chemogenetics
利用化学遗传学对氧化还原应激进行动态组织特异性调节
  • 批准号:
    10393690
  • 财政年份:
    2021
  • 资助金额:
    $ 44.22万
  • 项目类别:
Dynamic tissue-specific modulation of redox stress using chemogenetics
利用化学遗传学对氧化还原应激进行动态组织特异性调节
  • 批准号:
    10214064
  • 财政年份:
    2021
  • 资助金额:
    $ 44.22万
  • 项目类别:
Chemogenetic approaches to define the roles of redox dysfunction in the cardiomyopathy of aging
化学遗传学方法确定氧化还原功能障碍在衰老心肌病中的作用
  • 批准号:
    9922852
  • 财政年份:
    2019
  • 资助金额:
    $ 44.22万
  • 项目类别:
NRSA Training Core
NRSA 培训核心
  • 批准号:
    10398854
  • 财政年份:
    2018
  • 资助金额:
    $ 44.22万
  • 项目类别:
NRSA Training Core
NRSA 培训核心
  • 批准号:
    9916832
  • 财政年份:
    2018
  • 资助金额:
    $ 44.22万
  • 项目类别:
ADMINISTRATION
行政
  • 批准号:
    8250449
  • 财政年份:
    2011
  • 资助金额:
    $ 44.22万
  • 项目类别:
REDOX REGULATION OF eNOS SIGNALING PATHWAYS IN VASCULAR ENDOTHELIUM
血管内皮细胞 eNOS 信号通路的氧化还原调节
  • 批准号:
    8250446
  • 财政年份:
    2011
  • 资助金额:
    $ 44.22万
  • 项目类别:
ANIMAL MODELS OF REDOX METABOLISM AND ARTERIAL DYSFUNCTION
氧化还原代谢和动脉功能障碍的动物模型
  • 批准号:
    8250450
  • 财政年份:
    2011
  • 资助金额:
    $ 44.22万
  • 项目类别:
REDOX REGULATION OF eNOS SIGNALING PATHWAYS IN VASCULAR ENDOTHELIUM
血管内皮细胞 eNOS 信号通路的氧化还原调节
  • 批准号:
    7975784
  • 财政年份:
    2010
  • 资助金额:
    $ 44.22万
  • 项目类别:

相似国自然基金

氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
  • 批准号:
    32371222
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
  • 批准号:
    22371216
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
  • 批准号:
    82300940
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道菌群紊乱导致支链氨基酸减少调控Th17/Treg平衡相关的肠道免疫炎症在帕金森病中的作用和机制研究
  • 批准号:
    82301621
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氨基酸调控KDM4A蛋白N-末端乙酰化修饰机制在胃癌化疗敏感性中的作用研究
  • 批准号:
    82373354
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

The Rv2623-Rv1747 interaction: regulation of the in vivo fate of M. tuberculosis
Rv2623-Rv1747 相互作用:结核分枝杆菌体内命运的调节
  • 批准号:
    9973940
  • 财政年份:
    2020
  • 资助金额:
    $ 44.22万
  • 项目类别:
The Rv2623-Rv1747 interaction: regulation of the in vivo fate of M. tuberculosis
Rv2623-Rv1747 相互作用:结核分枝杆菌体内命运的调节
  • 批准号:
    10685658
  • 财政年份:
    2020
  • 资助金额:
    $ 44.22万
  • 项目类别:
The Rv2623-Rv1747 interaction: regulation of the in vivo fate of M. tuberculosis
Rv2623-Rv1747 相互作用:结核分枝杆菌体内命运的调节
  • 批准号:
    10529446
  • 财政年份:
    2020
  • 资助金额:
    $ 44.22万
  • 项目类别:
Dynamics of bacterial peptidoglycan synthesis
细菌肽聚糖合成动力学
  • 批准号:
    9197654
  • 财政年份:
    2015
  • 资助金额:
    $ 44.22万
  • 项目类别:
Dynamics of bacterial peptidoglycan synthesis
细菌肽聚糖合成动力学
  • 批准号:
    8809735
  • 财政年份:
    2015
  • 资助金额:
    $ 44.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了