Dynamics of bacterial peptidoglycan synthesis

细菌肽聚糖合成动力学

基本信息

  • 批准号:
    9197654
  • 负责人:
  • 金额:
    $ 85.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-05 至 2018-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The peptidoglycan (PG) cell wall has long been an attractive target for antibiotic intervention since the late stages of its synthesis take place on he solvent accessible surface of bacterial cells. This essential macromolecule defines bacterial size and shape and provides cells with mechanical strength to resist cell envelope breakdown. Additionally, recent research has demonstrated the importance of the spatiotemporal coordination of PG biosynthesis for bacterial growth, revealing a vulnerability that can be exploited for the development of new antibiotics. The development of methods to enable spatiotemporal tracking of PG synthesis in live bacterial cells is critical to advancing the understanding of the mechanisms of PG synthesis dynamics. In the absence of such methods, identification of new antibiotic targets or identification of novel antibiotic agents will remain elusive. This project has three specific aims that are focused on a long-term goal of elucidating the mechanisms of PG synthesis dynamics. The first Specific Aim seeks to design and develop a series of D-amino acid- and dipeptide-based fluorogenic probes, with optimized photophysical properties, that when coupled with integrated nanochannel and microfluidic devices, and automated image analysis tools, will propel the study of PG dynamics to an unprecedented level of spatiotemporal resolution. The subsequent specific aims will utilize these tools and approaches to analyze the mechanisms of PG dynamics in bacterial model systems with differing cell shapes and cell envelope architectures. In Specific Aim 2, the probes and methods developed under specific aim 1 will be employed to test two major and long-standing hypotheses regarding the spatiotemporal coordination of the elongation and division PG synthesis machineries as well as the coordination between PG hydrolysis and synthesis in the principal model for ovoid-shaped cells, Streptococcus pneumoniae. In Specific Aim 3, PG spatiotemporal dynamics will be examined at an unprecedented resolution for the major model species for rod-shaped Gram negative bacteria with a thin layer of PG, E. coli, and for rod-shaped Gram-positive bacteria with a thick layer of PG in the model organism, B. subtilis. Furthermore, Aim 3 will leverage a high-throughput microscopy screening platform, the availability of a comprehensive strain collection in which each gene has been separately deleted, and the powerful genetics of both species, to systematically and randomly screen for genes involved in PG synthesis dynamics. The comparative analysis of the three model systems will identify the core principles of PG dynamics and how they can be modified to yield different outcomes in dynamics, cell shape and cell envelope architecture. Aims 2 and 3 will feed back into Aim 1 and lead to the design of improved probes and nanochannel configurations. The highly integrated approach, coupled with the individual expertise of the investigators, will provide an unprecedented understanding of PG synthesis and dynamics that can be used to uncover new antibacterial targets, an important step toward addressing the critical need for the discovery of new antibiotics.
描述(由申请人提供):肽聚糖(PG)细胞壁长期以来一直是抗生素干预的有吸引力的靶标,因为其合成的晚期发生在细菌细胞的溶剂易访问表面上。这种必不可少的大分子定义了细菌的大小和形状,并为细胞提供了机械强度以抵抗细胞包膜分解。此外,最近的研究表明,PG生物合成对细菌生长的时空协调的重要性,揭示了可以利用的脆弱性,用于开发新的抗生素。实现活细胞细胞中PG合成的时空跟踪方法的发展对于促进对PG合成动力学机制的理解至关重要。在没有这种方法的情况下,鉴定新的抗生素靶标或新型抗生素剂的鉴定将仍然难以捉摸。该项目的三个特定目标集中在阐明PG合成动力学机制的长期目标上。 The first Specific Aim seeks to design and develop a series of D-amino acid- and dipeptide-based fluorogenic probes, with optimized photophysical properties, that when coupled with integrated nanochannel and microfluidic devices, and automated image analysis tools, will propel the study of PG dynamics to an unprecedented level of spatiotemporal resolution.随后的特定目的将利用这些工具和方法来分析具有不同细胞形状和细胞包膜架构的细菌模型系统中PG动力学的机制。在特定目标2中,将采用特定目标1开发的探针和方法,以测试有关伸长和PG合成机器的时空协调的两个主要和长期的假设,以及PG水解和合成中PG水解与卵巢形状模型的合成之间的协调。在特定的目标3中,PG时空动力学将以前所未有的分辨率进行研究,用于用于杆状革兰氏革兰氏阴性细菌的主要模型物种,其薄层PG,大肠杆菌,杆状革兰氏阳性细菌在模型生物体中具有厚的PG层PG。此外,AIM 3将利用高通量显微镜筛选平台,每个基因已分别删除的综合菌株收集的可用性以及两种物种的强大遗传学,以系统地和随机筛选参与PG合成动力学的基因。对三个模型系统的比较分析将确定PG动力学的核心原理以及如何修改它们以在动力学,细胞形状和细胞包膜结构中产生不同的结果。 AIM 2和3将反馈到AIM 1中,并导致改进的探针和纳米通道配置的设计。高度综合的方法,再加上研究人员的个人专业知识,将提供对PG合成和动态的前所未有的理解,可用于发现新的抗菌靶标,这是解决新抗生素的关键需求的重要一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YVES V BRUN其他文献

YVES V BRUN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YVES V BRUN', 18)}}的其他基金

Bacterial Subcellular Organization and its Impact on Growth, Development, Aging, and Surface Adhesion
细菌亚细胞组织及其对生长、发育、衰老和表面粘附的影响
  • 批准号:
    9276966
  • 财政年份:
    2017
  • 资助金额:
    $ 85.19万
  • 项目类别:
Dynamics of bacterial peptidoglycan synthesis
细菌肽聚糖合成动力学
  • 批准号:
    8809735
  • 财政年份:
    2015
  • 资助金额:
    $ 85.19万
  • 项目类别:
2014 Bacterial Cell Surfaces Gordon Research Conference
2014年细菌细胞表面戈登研究会议
  • 批准号:
    8785778
  • 财政年份:
    2014
  • 资助金额:
    $ 85.19万
  • 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
  • 批准号:
    8344340
  • 财政年份:
    2012
  • 资助金额:
    $ 85.19万
  • 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
  • 批准号:
    8518406
  • 财政年份:
    2012
  • 资助金额:
    $ 85.19万
  • 项目类别:
Synthesis and properties of a bacterial bioadhesive
细菌生物粘附剂的合成及性能
  • 批准号:
    8656372
  • 财政年份:
    2012
  • 资助金额:
    $ 85.19万
  • 项目类别:
Mechanism of Caulobacter adhesion
柄杆菌粘附机制
  • 批准号:
    8123689
  • 财政年份:
    2010
  • 资助金额:
    $ 85.19万
  • 项目类别:
Mechanism of Caulobacter adhesion
柄杆菌粘附机制
  • 批准号:
    7212666
  • 财政年份:
    2007
  • 资助金额:
    $ 85.19万
  • 项目类别:
Mechanism of Caulobacter adhesion
柄杆菌粘附机制
  • 批准号:
    7765561
  • 财政年份:
    2007
  • 资助金额:
    $ 85.19万
  • 项目类别:
Mechanism of Caulobacter adhesion
柄杆菌粘附机制
  • 批准号:
    7340743
  • 财政年份:
    2007
  • 资助金额:
    $ 85.19万
  • 项目类别:

相似国自然基金

SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
弓形虫感染对蜕膜NK细胞表面Lag-3的影响及进而导致其母胎耐受功能紊乱的分子机制研究
  • 批准号:
    32302903
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向调控Gremlin1经FGFR1/STAT3信号通路促进巨噬细胞胞葬对根尖周炎消退的影响及机制研究
  • 批准号:
    82301057
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PM2.5对上下气道来源的原代上皮细胞表型与功能的影响
  • 批准号:
    82311530108
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
32P-可降解微球调控TAM-FABP1细胞群的脂质代谢对肝细胞癌免疫微环境的影响及机制
  • 批准号:
    82372065
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 85.19万
  • 项目类别:
TET2 as a novel epigenetic regulator for uterine function and fertility
TET2 作为子宫功能和生育力的新型表观遗传调节因子
  • 批准号:
    10725828
  • 财政年份:
    2023
  • 资助金额:
    $ 85.19万
  • 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
  • 批准号:
    10587615
  • 财政年份:
    2023
  • 资助金额:
    $ 85.19万
  • 项目类别:
Targeting Dystroglycanopathies using Pluripotent-derived Myogenic Progenitors
使用多能源性肌源性祖细胞靶向肌营养不良症
  • 批准号:
    10561375
  • 财政年份:
    2023
  • 资助金额:
    $ 85.19万
  • 项目类别:
Defining mechanisms of metabolic-epigenetic crosstalk that drive glioma initiation
定义驱动神经胶质瘤发生的代谢-表观遗传串扰机制
  • 批准号:
    10581192
  • 财政年份:
    2023
  • 资助金额:
    $ 85.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了