Using Population Vectors to Understand Visual Working Memory for Natural Stimuli
使用群体向量来理解自然刺激的视觉工作记忆
基本信息
- 批准号:10543101
- 负责人:
- 金额:$ 39.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsArchitectureAreaAttentionBehaviorBehavioralBlinkingBrain regionCategoriesClassificationCodeColorComplexComputer ModelsConsensusDataDetectionDiagnosisDiseaseElectroencephalographyEvent-Related PotentialsEye MovementsFaceFrequenciesFunctional Magnetic Resonance ImagingGoalsHumanIndividual DifferencesLearningLifeLiteratureLocationMeasuresMemoryModelingNatureNeural Network SimulationNeuronsNeurosciencesNoisePathway interactionsPatternPerceptionPerformancePersonsPlayPopulationPrimatesPropertyProxyReportingResearchRoleSamplingShort-Term MemorySpecific qualifier valueStimulusStreamStructureSurfaceSystemTestingTrainingVisionVisualVisual PerceptionVisual impairmentVocabularyWorkbasebehavior predictionconvolutional neural networkdesignexperimental studyfeedinghuman subjectinsightmachine visionneuralneural patterningobject recognitionresponsetheoriesvectorverbalvisual memoryvisual processingvisual search
项目摘要
Visual working memory plays a fundamental role in visual perception and visually guided behavior, and
much has been learned about the nature of this memory system by studies using arrays of artificial but easily
controlled stimuli (e.g., arrays of colored disks or oriented Gabor patches). However, current quantitative
models of visual working memory based on these artificial stimuli cannot be readily extended to the kinds of
complex, structured scenes that humans face in daily life. The central goal of the proposed research is to
develop and test a new quantitative approach to understanding the representation of complex objects and
scenes in working memory, which will lead to a better understanding of real-world vision.
In our model, a scene is represented in visual working memory as a noisier version of the pattern of
activation that was produced during the perception of that scene. We model this by feeding the scene into a
neural network model of the ventral object recognition pathway and using the resulting pattern of activation
across the population of units (the population vector) as a model of the working memory representation. We
then use this model to make predictions about both behavioral performance and neural activity in human
subjects. For example, the change detection task involves presenting a sample scene followed after delay by a
test scene and asking subjects to report whether the two scenes are the same or different. We can model this
task by feeding the sample and test scenes into the model and computing the distance between the population
vectors for the sample and test scenes. In our preliminary data, we find that the distance between the vectors
can predict behavioral change detection performance extremely well. Moreover, we find that the vector for the
sample scene can predict the pattern of neural activity during the delay between the sample and test scenes
(measured via event-related potentials). Note that previous quantitative models of visual working memory
cannot make any predictions at all for the natural scenes used in these preliminary studies.
We propose testing and extending this model in several ways. First, we will conduct several experiments to
assess the ability of the model to predict behavioral performance and neural activity across a broad range of
natural stimuli. Second, we will compare the ability of population vectors from different cortical regions (as
estimated from the model and from fMRI data) to predict behavioral performance and delay-period activity,
providing new insights into the specific brain regions that underlie visual working memory. Third, we will
determine whether our model can predict performance in visually guided tasks (e.g., visual search) that rely on
visual working memory. Finally, we will assess different versions of our model that implement competing
mechanisms for producing capacity limitations, and we will compare the ability of these models to account for
behavioral performance for both natural scenes and classic examples of artificial stimuli. Together, these
experiments will provide a new and broader understanding of visual working memory.
视觉工作记忆在视觉感知和视觉引导行为中起着基本作用,并且
通过使用人造数组但很容易的研究,对这种记忆系统的性质有了很多了解
受控的刺激(例如,彩色磁盘或定向的Gabor斑块的阵列)。但是,电流定量
基于这些人造刺激的视觉工作记忆模型不能轻易扩展到那种
人类在日常生活中面临的复杂,结构化的场景。拟议研究的核心目标是
开发和测试一种新的定量方法,以理解复杂对象的表示和
工作记忆中的场景将使人们对现实世界的视野有更好的了解。
在我们的模型中,一个场景在视觉工作记忆中表示为模式的嘈杂版本
在对该场景感知期间产生的激活。我们通过将场景喂入一个
腹侧对象识别途径的神经网络模型并使用所得激活模式
在整个单位(人口矢量)中,作为工作记忆表示的模型。我们
然后使用此模型对人类行为表现和神经活动进行预测
主题。例如,更改检测任务涉及在延迟后呈现样本场景,然后
测试场景并要求受试者报告两个场景是相同还是不同。我们可以为此建模
通过将样本和测试场景喂入模型并计算总体之间的距离来任务
样品和测试场景的向量。在我们的初步数据中,我们发现向量之间的距离
可以很好地预测行为变化检测性能。此外,我们发现
样本场景可以预测样本和测试场景之间的延迟期间的神经活动模式
(通过事件相关电位测量)。请注意,以前的视觉工作记忆模型
对于这些初步研究中使用的自然场景,根本无法做出任何预测。
我们建议以多种方式进行测试并扩展此模型。首先,我们将进行几个实验
评估模型预测广泛范围的行为表现和神经活动的能力
自然刺激。其次,我们将比较来自不同皮质区域的人群向量的能力(作为
从模型和fMRI数据估计)以预测行为性能和延迟周期活动,
提供有关视觉工作记忆构成的特定大脑区域的新见解。第三,我们会的
确定我们的模型是否可以预测依赖的视觉指导任务(例如,视觉搜索)中的性能
视觉工作记忆。最后,我们将评估实施竞争的模型的不同版本
产生容量限制的机制,我们将比较这些模型的能力
自然场景和人造刺激的经典例子的行为表现。在一起,这些
实验将为视觉工作记忆提供新的更广泛的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN J LUCK其他文献
STEVEN J LUCK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN J LUCK', 18)}}的其他基金
Using Population Vectors to Understand Visual Working Memory for Natural Stimuli
使用群体向量来理解自然刺激的视觉工作记忆
- 批准号:
10339227 - 财政年份:2022
- 资助金额:
$ 39.94万 - 项目类别:
Anxiety and Attention: Electrophysiological Measurement of Enhancement and Suppr
焦虑和注意力:增强和抑制的电生理测量
- 批准号:
8690979 - 财政年份:2013
- 资助金额:
$ 39.94万 - 项目类别:
Anxiety and Attention: Electrophysiological Measurement of Enhancement and Suppr
焦虑和注意力:增强和抑制的电生理测量
- 批准号:
8511330 - 财政年份:2013
- 资助金额:
$ 39.94万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
7994242 - 财政年份:2009
- 资助金额:
$ 39.94万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
8197018 - 财政年份:2009
- 资助金额:
$ 39.94万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
10207183 - 财政年份:2009
- 资助金额:
$ 39.94万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
8591398 - 财政年份:2009
- 资助金额:
$ 39.94万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
9222043 - 财政年份:2009
- 资助金额:
$ 39.94万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
8390486 - 财政年份:2009
- 资助金额:
$ 39.94万 - 项目类别:
ERPLAB: Extensible, open source software for analysis of event-related potentials
ERPLAB:用于分析事件相关电位的可扩展开源软件
- 批准号:
10348210 - 财政年份:2009
- 资助金额:
$ 39.94万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
BioGRID: An open resource for biological interactions and network analysis
BioGRID:生物相互作用和网络分析的开放资源
- 批准号:
10819019 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
An Autonomous Rapidly Adaptive Multiphoton Microscope for Neural Recording and Stimulation
用于神经记录和刺激的自主快速自适应多光子显微镜
- 批准号:
10739050 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 39.94万 - 项目类别: