Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动设计减轻冠状动脉搭桥术后静脉移植失败
基本信息
- 批准号:10539814
- 负责人:
- 金额:$ 75.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAnimalsBiocompatible MaterialsBiologicalBiologyBlood VesselsCardiovascular systemCaringCarotid ArteriesCellsClinicalComputer ModelsComputer softwareComputing MethodologiesCoronary ArteriosclerosisCoronary Artery BypassCoronary VesselsDataData SetDevice DesignsDevicesDiffuseDisease ProgressionEstimation TechniquesFailureFunding AgencyGeometryGoalsGoldGrowthHistologyHumanImageIn VitroInflammationJointsLeadLiquid substanceMechanicsMediatingMedicalMedical ImagingMethodologyModelingMorbidity - disease rateOperative Surgical ProceduresOryctolagus cuniculusPatientsPerformancePostoperative PeriodPreclinical TestingPreventionProcessPropertyPublicationsSaphenous VeinSheepSolidStenosisStressStructureStructure of jugular veinSurgical ManagementTechniquesTestingTissue GraftsTissuesUncertaintyVein graftVeinsVenousanimal datadesignelastomericexperimental studygraft failurehemodynamicshigh risk populationhuman datahuman studyimproved outcomein silicoin vivoinnovationmechanical stimulusmortalitymultidisciplinarynovelopen sourcepredictive modelingpreventresponsesimulationstandard caretranscriptome sequencingtranslational approach
项目摘要
Coronary artery bypass graft (CABG) surgery is the gold standard treatment for patients with diffuse, multi-vessel
coronary artery disease, with >350,000 surgeries performed each year in the USA. Due to the limited availability
of arterial grafts, saphenous vein grafts (SVG) are used in >95% of patients. Despite advances in surgical
technique and post-surgical management, SVG stenoses and occlusions occur at alarmingly high rates: 5-10%
of SVGs fail within one month after surgery, 25% within 12-18 months, and 40-50% within 10 years, resulting in
significant morbidity and mortality. Currently, there are no clinically available means to prevent SVG failure
following CABG beyond optimal medical therapy. Mechanical stimuli, including hemodynamic loads and
associated vessel wall deformations and stresses, are known to contribute to the cell-mediated structural
changes leading to SVG failure, yet, the precise mechanobiological mechanisms remain poorly understood. In
preliminary studies, we quantified mechanical stimuli in CABG simulations, identifying hemodynamic markers
associated with SVG stenosis. Importantly, we introduced the first computational growth and remodeling (G&R)
framework that can delineate adaptive vs. maladaptive responses of vein grafts, incorporating optimization to
accelerate parameter estimation. With this model, we then predicted that an external bioabsorbable sheath,
present over a short post-operative period, could mitigate intermediate-term graft failure. Our scientific premise
is supported by a preliminary in vivo ovine study. Our collaborative multi-disciplinary team will address this
critical unmet need through tightly integrated computational model-driven design, experimental, and
clinical approaches to uncover arterialization mechanisms and evaluate a novel bioabsorbable sheath
device for SVG failure prevention. In Aim 1, we will develop the first G&R model of SVG arterialization
incorporating inflammation. We will inform and validate the model with data from a longitudinal rabbit surgical
study, in which we will perform surgery to interpose a jugular graft in the carotid artery. In Aim 2, we will
synthesize these data and models into a first-of-its-kind 3D fluid-solid-growth (FSG) simulator to predict SVG
disease progression, validated against an independent subset of animal data. To further inform our models, we
will characterize human SVG tissue with biaxial tissue testing. We will increase rigor by incorporating uncertainty
quantification. In Aim 3, we will design, optimize and evaluate a novel external sheath device for the prevention
of SVG failure, integrating in silico and large animal in vivo studies. We will rapidly 3D print sheath designs from
a unique class of bioabsorbable elastomeric materials with tunable degradation rates. This proposal brings
together a multidisciplinary team with expertise in cardiovascular simulation, vascular mechanobiology,
optimization, imaging, biomaterials, additive manufacturing, and clinical cardiovascular care as well as a track
record of joint publications, funding, and open-source software. Our ultimate goal is to improve outcomes of
CABG patients via prediction and prevention of SVG failure, for whom there are limited treatment options.
冠状动脉搭桥移植物(CABG)手术是弥漫性,多重血管患者的金标准治疗
冠状动脉疾病,每年在美国进行35万次手术。由于有限的可用性
在> 95%的患者中,使用了动脉移植物,隐静脉移植物(SVG)。尽管手术进展
技术和手术后的管理,SVG促炎和闭塞以令人震惊的高率发生:5-10%
SVG在手术后一个月内失败,12-18个月内25%,在10年内40-50%
显着的发病率和死亡率。目前,尚无临床上可用的方法来防止SVG失败
遵循最佳药物疗法之外的CABG。机械刺激,包括血流动力学负荷和
相关血管壁的变形和应力已知有助于细胞介导的结构
导致SVG失败的变化,但是,确切的机械生物学机制仍然很少理解。在
初步研究,我们在CABG模拟中量化了机械刺激,鉴定了血液动力学标记
与SVG狭窄相关。重要的是,我们引入了第一个计算增长和重塑(G&R)
可以描述静脉移植物的自适应与适应不良反应的框架,并将优化纳入
加速参数估计。然后,使用此模型,我们预测外部生物吸收鞘,
在术后短期内,可能会减轻中期移植物的失败。我们的科学前提
由初步体内卵子研究支持。我们的协作多学科团队将解决这个问题
通过紧密整合的计算模型驱动的设计,实验和
发现动脉化机制的临床方法并评估一种新型的生物吸附鞘
SVG预防故障的设备。在AIM 1中,我们将开发第一个SVG动脉化的G&R模型
纳入炎症。我们将通过纵向兔手术的数据告知和验证模型
研究,我们将进行手术以插入颈动脉中的颈移植物。在AIM 2中,我们将
将这些数据和模型合成为首先的3D流体 - 固体生长(FSG)模拟器以预测SVG
疾病进展,以独立的动物数据子集进行了验证。为了进一步告知我们的模型,我们
将通过双轴组织测试来表征人类SVG组织。我们将通过纳入不确定性来增加严格
定量。在AIM 3中,我们将设计,优化和评估一种新型的外部护套装置以进行预防
SVG衰竭,在体内研究中整合在硅和大动物中。我们将从
具有可调降解速率的独特一类可生物吸收弹性材料。该提议带来了
一个多学科的团队,具有心血管模拟,血管机械生物学方面的专业知识,
优化,成像,生物材料,添加剂制造和临床心血管护理以及轨道
共同出版物,资金和开源软件的记录。我们的最终目标是改善
CABG患者通过预测和预防SVG衰竭,治疗方案有限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay D. Humphrey其他文献
A Computational Framework to Predict and Understand in situ Heart Valve Tissue Engineering
- DOI:
10.1080/24748706.2021.1900703 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Elmer Middendorp;Marcos Latorre;Jason M. Szafron;Frank P.T. Baaijens;Jay D. Humphrey;Sandra Loerakker - 通讯作者:
Sandra Loerakker
ブレインサイエンス・レビュー2004
脑科学评论 2004
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Daisuke Mori;Guido David;Jay D. Humphrey;James E. Moore Jr.;Miho Terunuma;平田 雅人 - 通讯作者:
平田 雅人
Altered mechanical behavior and properties of the human anterior lens capsule after cataract surgery.
白内障手术后人类晶状体前囊的机械行为和特性发生改变。
- DOI:
10.1016/j.exer.2009.06.001 - 发表时间:
2009 - 期刊:
- 影响因子:3.4
- 作者:
R. Pedrigi;J. Dziezyc;Jay D. Humphrey - 通讯作者:
Jay D. Humphrey
Journal of Mechanics of Materials and Structures SPONTANEOUS UNWINDING OF A LABILE DOMAIN IN A COLLAGEN TRIPLE HELIX
材料与结构力学杂志 胶原三螺旋中不稳定域的自发展开
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Krishnakumar M. Ravikumar;Jay D. Humphrey;Wonmuk Hwang - 通讯作者:
Wonmuk Hwang
FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method
FSGe:一种快速、强耦合的 3D 流固生长相互作用方法
- DOI:
10.48550/arxiv.2404.13523 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Martin R. Pfaller;Marcos Latorre;Erica L. Schwarz;F. Gerosa;Jason M. Szafron;Jay D. Humphrey;Alison L. Marsden - 通讯作者:
Alison L. Marsden
Jay D. Humphrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay D. Humphrey', 18)}}的其他基金
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动的设计可减轻冠状动脉搭桥术后静脉移植失败的风险
- 批准号:
10683327 - 财政年份:2022
- 资助金额:
$ 75.24万 - 项目类别:
Modeling Multiscale Immuno-Mechanics in Aortic Disease
主动脉疾病的多尺度免疫力学建模
- 批准号:
10532786 - 财政年份:2022
- 资助金额:
$ 75.24万 - 项目类别:
Modeling Multiscale Immuno-Mechanics in Aortic Disease
主动脉疾病的多尺度免疫力学建模
- 批准号:
10352581 - 财政年份:2022
- 资助金额:
$ 75.24万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10184861 - 财政年份:2020
- 资助金额:
$ 75.24万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10376852 - 财政年份:2019
- 资助金额:
$ 75.24万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10573756 - 财政年份:2019
- 资助金额:
$ 75.24万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10132382 - 财政年份:2019
- 资助金额:
$ 75.24万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
9904189 - 财政年份:2019
- 资助金额:
$ 75.24万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 75.24万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 75.24万 - 项目类别:
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
- 批准号:
10679530 - 财政年份:2023
- 资助金额:
$ 75.24万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 75.24万 - 项目类别:
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 75.24万 - 项目类别: