Multiscale Modeling of Aortic Homeostasis
主动脉稳态的多尺度建模
基本信息
- 批准号:10189114
- 负责人:
- 金额:$ 8.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-19 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgingAmericanAngiotensin IIAortaArteriesBiologicalBiologyBiomechanicsBlood PressureBlood VesselsBlood flowBody TemperatureCaliberCardiacCardiovascular DiseasesCardiovascular systemCell physiologyChronicCollagenComplicationComputer ModelsComputing MethodologiesCountryDNA Sequence AlterationDataData SetDatabasesDiseaseDissectionElastinEndothelial CellsEndotheliumEnsureEnvironmentEquilibriumFailureFeedbackFemaleFibroblastsFundingFutureGenesGoalsGrantGrowthHistologyHomeostasisHypertensionInflammationInfusion proceduresIntercellular FluidInterventionLungMasksMathematicsMechanicsMedialMedicineMethodsModelingMolecularMorbidity - disease rateMusOncologyOphthalmologyOrganPathologicPhenotypeProcessReproducibilityResearchResearch MethodologyResearch Project GrantsRisk FactorsRuptureSignal TransductionSmooth MuscleSmooth Muscle MyocytesStimulusTalentsTestingTherapeutic InterventionThickThinnessTimeTissue-Specific Gene ExpressionTissuesTraining SupportVascular DiseasesWorkbiological systemsburden of illnesscell typeclinically significantcomputer frameworkdesigndifferential expressioninnovationinsightkidney vascular structuremechanical loadmonolayermortalitymouse modelmulti-scale modelingmultiscale dataneurovascularnovelpreservationpreventresearch and developmentrespiratory smooth muscleresponsesecondary analysissmall moleculesoft tissuetheoriestranscriptome sequencing
项目摘要
PROJECT SUMMARY. Mechanical homeostasis is a process by which the vasculature adapts to changes in
blood flow, blood pressure, and other influences. Mounting evidence suggests that compromised or lost
homeostasis is a cause or consequence of many vascular diseases. There is, therefore, a pressing need for an
increased understanding of vascular homeostasis, which necessarily derives from molecular and cellular
processes but manifests at the tissue level via negative feedback that can be described mathematically.
The goal of this project is to use an existing extensive data set on aortic remodeling in a unique mouse model of
hypertension to inform and validate a new multiscale model of vascular homeostasis. Once achieved, such a
model promises to help delineate compensatory mechanisms that promote tissue homeostasis via changes in
cell signaling versus pathologic mechanisms that prevent homeostasis. Toward this end, we will meld recent
advances in cell signaling models and continuum level growth and remodeling models to describe and predict
data from a unique mouse model of hypertension wherein aortic remodeling is adaptive because of a preserved
contractile phenotype and augmented synthetic phenotype, with inherently low inflammation. In this way we will
avoid the typical complication of inflammation that is present in other mouse models of hypertension and drives
the response away from homeostasis. We will inform our mechanobiologically motivated multiscale model using
a combination of data from RNA sequencing, quantitative histology, and biaxial biomechanical (passive and
active) data. Importantly, this data-informed model will enable us to explore, for the first time, the potentially
adaptive versus maladaptive changes in cell signaling topology that promote or prevent effective homeostasis,
thus representing a paradigm shift in the way some vascular diseases are understood and how best to treat
them. Hypertension, for example, is rampant in this country and is a key risk factor for diverse cardiovascular,
neurovascular, and renovascular diseases. This work is significant biologically for it has potential to provide new
insight into this insidious risk factor. More generally, however, tissue homeostasis is fundamental to many
different tissues and organs and our general computational approach promises to be generally applicable.
Finally, this work is highly innovative for it will identify a new computational framework for integrating information
across scales from differentially expressed genes to tissue-level manifestations, and it will enable delineation of
potentially homeostatic versus non-homeostatic responses to diverse genetic mutations or small molecule
interventions, which can guide therapeutic intervention. This proposal is submitted via the R03 mechanism since
its focus is “Development of research methodology” and “Secondary analysis of existing data”, specifically, a
unique multiscale data set obtained from a fortuitously discovered mouse model. It will also support the training
of a promising young female biomathematician as she transitions to vascular research.
项目摘要。机械稳态是脉管系统适应变化的过程。
越来越多的证据表明,血流、血压和其他影响受到损害或丢失。
体内平衡是许多血管疾病的原因或后果,因此迫切需要一种方法。
增加对血管稳态的了解,这必然源自分子和细胞
过程,但通过可以描述的负反馈在数学上表现在组织水平上。
该项目的目标是在独特的小鼠模型中使用现有的有关主动脉重塑的广泛数据集
一旦实现,就可以通过高血压来告知和验证新的多尺度血管稳态模型。
该模型有望帮助描述通过改变促进组织稳态的补偿机制
为此,我们将融合最近的细胞信号传导与阻止体内平衡的病理机制。
细胞信号传导模型以及描述和预测的连续水平生长和重塑模型的进展
来自独特的高血压小鼠模型的数据表明,主动脉重塑是适应性的,因为保留了
收缩表型和增强的合成表型,具有固有的低炎症。
避免其他高血压和驱动力小鼠模型中存在的典型炎症并发症
我们将使用力学生物学驱动的多尺度模型来了解远离稳态的反应。
来自 RNA 测序、定量组织学和双轴生物力学(被动和
重要的是,这种基于数据的模型将使我们能够首次探索潜在的可能性。
细胞信号拓扑中促进或阻止有效稳态的适应性与适应不良变化,
因此代表了一些血管疾病的理解方式以及如何最好地治疗的范式转变
例如,高血压在这个国家很猖獗,是多种心血管疾病的关键危险因素。
这项工作具有重要的生物学意义,因为它有可能提供新的治疗方法。
然而,更普遍的是,组织稳态对许多人来说至关重要。
不同的组织和器官,我们的通用计算方法有望普遍适用。
最后,这项工作具有高度创新性,因为它将确定一个用于整合信息的新计算框架
从差异表达基因到组织水平表现的各个尺度,它将能够描述
对不同基因突变或小分子的潜在稳态反应与非稳态反应
该提案是通过 R03 机制提交的。
其重点是“研究方法的发展”和“现有数据的二次分析”,具体来说,
从偶然发现的小鼠模型获得的独特的多尺度数据集也将支持训练。
一位有前途的年轻女性生物数学家转向血管研究的故事。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay D. Humphrey其他文献
ブレインサイエンス・レビュー2004
脑科学评论 2004
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Daisuke Mori;Guido David;Jay D. Humphrey;James E. Moore Jr.;Miho Terunuma;平田 雅人 - 通讯作者:
平田 雅人
FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method
FSGe:一种快速、强耦合的 3D 流固生长相互作用方法
- DOI:
10.48550/arxiv.2404.13523 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Martin R. Pfaller;Marcos Latorre;Erica L. Schwarz;F. Gerosa;Jason M. Szafron;Jay D. Humphrey;Alison L. Marsden - 通讯作者:
Alison L. Marsden
Aortic Strain in Patients with Marfan Syndrome Long-Term After Proximal Graft Replacement Surgery: Novel Insights Enabled by Cine-CMR Biomechanical Characterization
近端移植物置换手术后长期马凡氏综合症患者的主动脉拉伤:Cine-CMR 生物力学表征带来的新见解
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Robert Y. Park;Cole Latvis;M. Roman;Jiwon Kim;Hannah K. Agoglia;Nicole Liberman;Pablo Villar;Raina Jain;Sheldon Liu;Lisa Q. Rong;M. Palumbo;Alberto Redaelli;Yadong Wang;Jay D. Humphrey;R. B. Devereux;G. Soletti;Mario F. L. Gaudino;Leonard N. Girardi;J. Weinsaft - 通讯作者:
J. Weinsaft
Mechanics of the arterial wall: review and directions.
动脉壁力学:回顾和方向。
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Jay D. Humphrey - 通讯作者:
Jay D. Humphrey
Altered mechanical behavior and properties of the human anterior lens capsule after cataract surgery.
白内障手术后人类晶状体前囊的机械行为和特性发生改变。
- DOI:
10.1016/j.exer.2009.06.001 - 发表时间:
2009 - 期刊:
- 影响因子:3.4
- 作者:
R. Pedrigi;J. Dziezyc;Jay D. Humphrey - 通讯作者:
Jay D. Humphrey
Jay D. Humphrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay D. Humphrey', 18)}}的其他基金
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动的设计可减轻冠状动脉搭桥术后静脉移植失败的风险
- 批准号:
10683327 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动设计减轻冠状动脉搭桥术后静脉移植失败
- 批准号:
10539814 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Modeling Multiscale Immuno-Mechanics in Aortic Disease
主动脉疾病的多尺度免疫力学建模
- 批准号:
10532786 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Modeling Multiscale Immuno-Mechanics in Aortic Disease
主动脉疾病的多尺度免疫力学建模
- 批准号:
10352581 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10184861 - 财政年份:2020
- 资助金额:
$ 8.38万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10376852 - 财政年份:2019
- 资助金额:
$ 8.38万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10573756 - 财政年份:2019
- 资助金额:
$ 8.38万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10132382 - 财政年份:2019
- 资助金额:
$ 8.38万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
9904189 - 财政年份:2019
- 资助金额:
$ 8.38万 - 项目类别:
相似海外基金
Targeting smooth muscle cell BMAL1 as a new therapeutic strategy against restenosis
靶向平滑肌细胞 BMAL1 作为抗再狭窄的新治疗策略
- 批准号:
10561398 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
RAS-Driven Central Inflammation and Cognitive Decline with Aging.
RAS 驱动的中枢炎症和认知能力随着衰老而下降。
- 批准号:
10453781 - 财政年份:2021
- 资助金额:
$ 8.38万 - 项目类别:
RAS-Driven Central Inflammation and Cognitive Decline with Aging.
RAS 驱动的中枢炎症和认知能力随着衰老而下降。
- 批准号:
10301248 - 财政年份:2021
- 资助金额:
$ 8.38万 - 项目类别:
An Innovative Approach for Understanding Trajectories of Medication Adherence in Patients with Heart Failure
了解心力衰竭患者药物依从性轨迹的创新方法
- 批准号:
10054987 - 财政年份:2020
- 资助金额:
$ 8.38万 - 项目类别: