Linking microbiome genetic variants with cardiovascular phenotypes in 50,000 individuals

将 50,000 名个体的微生物组遗传变异与心血管表型联系起来

基本信息

  • 批准号:
    10516693
  • 负责人:
  • 金额:
    $ 70.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT The human body is home to a complex community of microorganisms (“microbiome”) that differs in composition between people, with numerous correlates to cardiovascular disease (CVD). Any two people will harbor different strains of a given species, which can be more genetically different than a human and chimpanzee with <60% of their genes shared. Even within a single person, each microbiome species may be a complex mixture of strains with different genomes and functional capabilities. This striking within-species genetic diversity has functional consequences for CVD, because gene loss and gain modify how strains process our diet, metabolize drugs, and stimulate inflammation. Hence, a population genetic approach is essential for revealing causal links between the microbiome and CVD. We have compiled a deeply phenotyped cohort of ~50,000 individuals with metagenomic sequencing of their gut microbiomes. This dataset includes ~8,000 people with atherosclerosis, thousands with measurements of heart function and metabolic health, and hundreds with acute coronary syndrome. This cohort is a unique and ideal setting to perform a well-powered CVD metagenome-wide association study (MWAS). Several barriers must be overcome before MWAS can be deployed at this scale. First, we must reduce the infeasible computational cost of genotyping thousands of microbiome species across ~50,000 people. Second, to ensure that statistical tests for associations do not have high false positive rates we need statistical models that adjust for microbial population structure within and across hosts. The goal of this proposal is to create a research toolbox to address these challenges as well as to identify putative mechanistic links between microbiome and CVD. We will develop data structures and query algorithms for accelerated genotype estimation and mixed effects models for accurate association tests. All code and methods will be open source and designed to be easily extended to other microbiome cohorts. Applying these tools to our cohort, we aim to identify specific microbial genes and pathways responsible for known associations between microbes and CVD. We also expect to discover new associations that were missed because cohorts were too small or they were analyzed with methods that ignore differences in gene content across strains. These findings will be used to identify microbial biomarkers for CVD diagnosis and personalized treatments or to design microbiome targeted drugs, prebiotics, and probiotics to treat heart disease.
项目概要/摘要 人体是一个复杂的微生物群落(“微生物组”)的家园,其组成不同 人与人之间,与心血管疾病(CVD)有很多相关性,任何两个人都会有不同的情况。 特定物种的品系,其基因差异可能比人类和黑猩猩更大,其遗传差异<60% 即使在一个人体内,每个微生物组物种也可能是菌株的复杂混合物。 具有不同的基因组和功能能力。这种惊人的种内遗传多样性具有功能性。 CVD 的后果,因为基因丢失和获得改变了菌株处理我们的饮食、代谢药物和 因此,群体遗传学方法对于揭示炎症之间的因果关系至关重要。 微生物组和 CVD。 我们编制了约 50,000 名个体的深度表型队列,并对他们的肠道进行了宏基因组测序 该数据集包括约 8,000 名动脉粥样硬化患者,其中数千人进行了心脏测量 功能和代谢健康,以及数百名急性冠状动脉综合征患者。这个队列是独特且理想的。 设置执行功能强大的 CVD 宏基因组范围关联研究 (MWAS)。 在大规模部署 MWAS 之前,必须克服几个障碍。首先,我们必须减少。 对约 50,000 人的数千种微生物进行基因分型的计算成本不可行。 为了确保关联的统计测试不会出现高误报率,我们需要统计模型 适应宿主内部和宿主之间的微生物种群结构。该提案的目标是创建一个 研究工具箱来应对这些挑战以及确定之间假定的机制联系 我们将开发用于加速基因型估计的数据结构和查询算法。 以及用于精确关联测试的混合效应模型。所有代码和方法都将开源并设计。 可以轻松扩展到其他微生物群。 将这些工具应用于我们的队列,我们​​的目标是确定负责的特定微生物基因和途径 我们还希望发现微生物与 CVD 之间已知的关联。 因为队列太小或者他们的分析方法忽略了基因内容的差异 这些发现将用于识别用于 CVD 诊断和个性化的微生物生物标志物。 治疗或设计微生物组靶向药物、益生元和益生菌来治疗心脏病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATHERINE S. POLLARD其他文献

KATHERINE S. POLLARD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATHERINE S. POLLARD', 18)}}的其他基金

Discovering human divergent activity-regulated elements using comparative, computational, and functional approaches
使用比较、计算和功能方法发现人类不同活动调节的元素
  • 批准号:
    10779701
  • 财政年份:
    2023
  • 资助金额:
    $ 70.73万
  • 项目类别:
Linking microbiome genetic variants with cardiovascular phenotypes in 50,000 individuals
将 50,000 名个体的微生物组遗传变异与心血管表型联系起来
  • 批准号:
    10672312
  • 财政年份:
    2022
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Integrative Data-Science Core
核心 B:综合数据科学核心
  • 批准号:
    10670335
  • 财政年份:
    2021
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Integrative Data-Science Core
核心 B:综合数据科学核心
  • 批准号:
    10271125
  • 财政年份:
    2021
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Integrative Data-Science Core
核心 B:综合数据科学核心
  • 批准号:
    10461841
  • 财政年份:
    2021
  • 资助金额:
    $ 70.73万
  • 项目类别:
Resolving single-cell brain regulatory elements with bulk data supervised models
用批量数据监督模型解决单细胞大脑调节元件
  • 批准号:
    10362579
  • 财政年份:
    2020
  • 资助金额:
    $ 70.73万
  • 项目类别:
Resolving single-cell brain regulatory elements with bulk data supervised models
用批量数据监督模型解决单细胞大脑调节元件
  • 批准号:
    10579845
  • 财政年份:
    2020
  • 资助金额:
    $ 70.73万
  • 项目类别:
Resolving single-cell brain regulatory elements with bulk data supervised models
用批量数据监督模型解决单细胞大脑调节元件
  • 批准号:
    10007660
  • 财政年份:
    2020
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Advanced Bioinformatics Core
核心 B:高级生物信息学核心
  • 批准号:
    10471985
  • 财政年份:
    2019
  • 资助金额:
    $ 70.73万
  • 项目类别:
Core B: Advanced Bioinformatics Core
核心 B:高级生物信息学核心
  • 批准号:
    10006186
  • 财政年份:
    2019
  • 资助金额:
    $ 70.73万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 70.73万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 70.73万
  • 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
  • 批准号:
    10723819
  • 财政年份:
    2023
  • 资助金额:
    $ 70.73万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 70.73万
  • 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
  • 批准号:
    10798514
  • 财政年份:
    2023
  • 资助金额:
    $ 70.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了