Core B: Integrative Data-Science Core
核心 B:综合数据科学核心
基本信息
- 批准号:10461841
- 负责人:
- 金额:$ 73.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAmyloid beta-ProteinApolipoprotein EAtlasesAttentionAutopsyBehavioralBehavioral AssayBioinformaticsBiological AssayBiologyBrainCell NucleusCellsCellular AssayCodeCommunitiesComplexCoupledDataData AnalysesData CollectionData DisplayData Science CoreData SetDiseaseDisease modelElectrophysiology (science)EtiologyExperimental DesignsGene ExpressionGene Expression RegulationGenerationsGenesGeneticGenetic Predisposition to DiseaseGenomicsGenotypeGoalsHumanImpaired cognitionInheritedIntuitionLeadLibrariesLinkMachine LearningMeasuresModelingMolecularMusNeuronsPathologicPathologyPatternPhenotypeProblem SolvingProceduresProcessProgram Research Project GrantsProtocols documentationPublic DomainsRegulator GenesResearchResearch DesignResourcesSamplingSmall Nuclear RNASource CodeStandardizationStatistical ModelsSynapsesSystemSystems DevelopmentTechniquesTestingTimeTissue DonorsTissuesVariantVisualizationbrain tissuecell typecohortcomputerized toolsdata explorationdata integrationdata portaldeep learningdesigndiverse dataepigenomeexperimental studygenetic variantgenomic datahigh dimensionalityhumanized mouseimprovedinnovationlarge scale datalearning networkmachine learning methodmouse modelmultimodalitynetwork dysfunctionnetwork modelsneural networknovelopen sourcephenotypic datapower analysispredictive modelingprogramsresponsesequencing platformstatisticstau Proteinstooltranscriptometranscriptomicsuser-friendlyweb portalweb site
项目摘要
CORE B – ABSTRACT
This program aims to discover the molecular drivers and consequences of network dysfunction in Alzheimer’s
disease (AD) through rigorous characterization of cell-type specific gene regulation and multi-modal phenotypes.
We will use human samples and a variety of mouse models. This breadth and depth of data across different
organismal and cellular contexts present a unique opportunity for integrative modeling. To capitalize on this
opportunity, however, the data must be quantitatively comparable across projects. To address this challenge,
the Integrative Data-Science Core (Core B) will use the “design for inference” approach, which means that the
predictive modeling and hypothesis testing we plan to do will guide all stages of experimental design. To minimize
and correct batch effects, we will standardize experimental protocols and establish a repeated-measures
experimental design, which will boost the power for analyses. A second challenge is how to summarize and
jointly model complex, high-dimensional phenotypes with single-cell and single-nucleus transcriptomic profiles.
To solve this problem, we will develop innovative machine-learning and network models, with a focus on deep
learning and sparse canonical correlation analysis to extract information from multivariate data and discover
relationships between pairs of data types. To facilitate real-time sharing of results and exploration of data across
projects, we will implement data tracking systems, Jupyter notebooks with pipelines and analytical code, and an
interactive data portal with visualization and query capabilities. These collaborative tools will also help us share
our data, code, and results rapidly with the AD research community through our Synapse website. Collectively,
the activities of Core B will provide cutting-edge computational support to all four projects, enable cross-project
discovery, and set new standards for the use of large-scale data integration to decipher molecular mechanisms
in AD and other diseases.
核心 B – 摘要
该项目旨在发现阿尔茨海默氏症网络功能障碍的分子驱动因素和后果
通过严格表征细胞类型特异性基因调控和多模式表型来识别疾病(AD)。
我们将使用人类样本和各种小鼠模型来获取不同广度和深度的数据。
生物和细胞环境为综合建模提供了独特的机会。
然而,为了应对这一挑战,数据必须在数量上具有可比性。
综合数据科学核心(核心 B)将使用“推理设计”方法,这意味着
我们计划进行的预测建模和假设检验将指导实验设计的所有阶段,以尽量减少。
并纠正批次效应,我们将标准化实验方案并建立重复测量
实验设计,这将提高分析的能力,第二个挑战是如何总结和分析。
利用单细胞和单核转录组图谱联合建模复杂的高维表型。
为了解决这个问题,我们将开发创新的机器学习和网络模型,重点是深度学习
学习和稀疏典型相关分析从多元数据中提取信息并发现
数据类型对之间的关系促进结果的实时共享和数据的探索。
项目中,我们将实施数据跟踪系统、带有管道和分析代码的 Jupyter 笔记本,以及
具有可视化和查询功能的交互式数据门户也将帮助我们共享。
我们的数据、代码和结果通过我们的 Synapse 网站与 AD 研究社区快速共享,
Core B 的活动将为所有四个项目提供尖端计算支持,实现跨项目
发现,并为使用大规模数据集成破译分子机制设定新标准
AD 和其他疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHERINE S. POLLARD其他文献
KATHERINE S. POLLARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHERINE S. POLLARD', 18)}}的其他基金
Discovering human divergent activity-regulated elements using comparative, computational, and functional approaches
使用比较、计算和功能方法发现人类不同活动调节的元素
- 批准号:
10779701 - 财政年份:2023
- 资助金额:
$ 73.69万 - 项目类别:
Linking microbiome genetic variants with cardiovascular phenotypes in 50,000 individuals
将 50,000 名个体的微生物组遗传变异与心血管表型联系起来
- 批准号:
10516693 - 财政年份:2022
- 资助金额:
$ 73.69万 - 项目类别:
Linking microbiome genetic variants with cardiovascular phenotypes in 50,000 individuals
将 50,000 名个体的微生物组遗传变异与心血管表型联系起来
- 批准号:
10672312 - 财政年份:2022
- 资助金额:
$ 73.69万 - 项目类别:
Resolving single-cell brain regulatory elements with bulk data supervised models
用批量数据监督模型解决单细胞大脑调节元件
- 批准号:
10362579 - 财政年份:2020
- 资助金额:
$ 73.69万 - 项目类别:
Resolving single-cell brain regulatory elements with bulk data supervised models
用批量数据监督模型解决单细胞大脑调节元件
- 批准号:
10579845 - 财政年份:2020
- 资助金额:
$ 73.69万 - 项目类别:
Resolving single-cell brain regulatory elements with bulk data supervised models
用批量数据监督模型解决单细胞大脑调节元件
- 批准号:
10007660 - 财政年份:2020
- 资助金额:
$ 73.69万 - 项目类别:
相似国自然基金
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
OATPs介导Aβ/p-Tau转运对阿尔茨海默病病理机制形成及治疗影响的研究
- 批准号:82360734
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超细颗粒物暴露对阿尔茨海默病的影响及其机制研究
- 批准号:82373532
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于个体水平的空气环境暴露组学探讨影响阿尔茨海默病的风险因素
- 批准号:82304102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用小鼠模型研究Y染色体丢失对阿尔茨海默病的影响及分子机制
- 批准号:32260148
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 73.69万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 73.69万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 73.69万 - 项目类别:
Nursing homes' visitation bans during the COVID-19 pandemic: Effectiveness and consequences.
COVID-19 大流行期间疗养院的探视禁令:有效性和后果。
- 批准号:
10635829 - 财政年份:2023
- 资助金额:
$ 73.69万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 73.69万 - 项目类别: