Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
基本信息
- 批准号:10480866
- 负责人:
- 金额:$ 38.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureAreaAttentionAutomobile DrivingBehaviorBehavioralBiophysicsBrainCollaborationsComplexComputer ModelsDataDecision MakingDiseaseElectroencephalographyElectrophysiology (science)Event-Related PotentialsExhibitsEyeEye MovementsFoundationsFundingGoalsHumanIndividualIndividual DifferencesInjuryInterventionLinkLocationMacacaMathematicsMeasuresMindModelingMonkeysMorphologic artifactsMovementNatureNeurologicNeuronsParticipantPerformancePharmacologyProbabilityProcessRaceRampReaction TimeResearchRestSaccadesSignal TransductionSpecific qualifier valueTask PerformancesTestingTimeTrainingTranslational ResearchV4 neuronVisionVision DisordersVisualVisual FieldsVisual PerceptionVisual attentionVisual impairmentWorkbasebehavior measurementbehavior predictionbehavioral responsebrain behaviordesigndisabilityexperimental studyfrontal eye fieldshuman dataindexinginnovationinsightmental stateneural circuitneural modelneurophysiologypredictive modelingrelating to nervous systemresponsetheoriestoolvisual cognitionvisual processvisual search
项目摘要
PROJECT SUMMARY
Support is requested to advance an innovative, productive collaboration aimed at linking mind, brain, and
behavior using performance, neurophysiological, and electrophysiological measures from monkeys and
humans performing visual search and visual decision making tasks. The general goal is to derive the
connections from spike trains in monkeys to behavior in humans using computational models that specify
mental states mathematically, link them to brain states in particular neurons, and explain how the neural
computations produces behavior. Our Gated Accumulator Model (GAM) assumes a stochastic accumulation of
evidence to threshold for alternative responses. Model assessment involves quantitatively testing alternative
model architectures on predictions of behavioral measures, response probabilities and distributions of correct
and error response times, as well as neural measures and how these change with set size and target-distractor
discriminability in previously collected data from monkeys performing visual search. While our previously
funded research aimed to understand the architecture of evidence accumulation in GAM and the relationship of
model accumulators to the observed dynamics of movement-related neurons in FEF, our newly proposed
research aims to understand computationally the nature of the evidence that drives that accumulation and its
relationship to the measured dynamics of visually-responsive neurons in FEF. Aim 1 compares the quality of
salience evidence in lateralized EEG signals and neural discharges from visually-responsive neurons in
monkeys performing visual search as input evidence to a network of stochastic accumulators to predict
behavior. Aim 2 addresses a major challenge to the neural accumulator framework by determining whether
movement neuron dynamics in FEF actually ramp or step. Aim 3 evaluates alternative architectures for an
abstract Visual Attention Model (VAM) of the evidence driving accumulation to jointly predict observed behavior
and the measured dynamics of visually-responsive neurons. Aim 4 extends VAM to more complex visual tasks
involving filtering and selection. The result will be a broader and deeper understanding of the visual processes
that select targets and control eye movements. Computational models like VAM and GAM may be at the “just
right” level of abstraction. They capture essential details of the computation in ways that explain neural activity
and behavior in single participants, whether monkey or human. These models can be used to understand
normal behavior as well as illness, disability, and disease; the best-fitting parameters can characterize
individual differences in behavior and provide markers for brain measures. These models can also inform
neurological conditions that have a biophysical basis at the level of individual neurons and neural circuits,
offering insight into what neurons and circuits compute and how they do it.
项目摘要
要求支持以促进创新的产品合作,旨在将思想,大脑和
采用性能,神经生理和猴子和电生理测量的行为
人类执行视觉搜索和视觉决策任务。一般目标是得出
使用指定的计算模型,从猴子的尖峰火车到人类行为的连接
精神状态在数学上,将它们链接到脑状态,特别是神经元,并解释神经元如何
计算产生行为。我们的封闭蓄能器模型(GAM)假设
替代响应的阈值证据。模型评估涉及定量测试替代方案
模型体系结构,以预测行为度量,响应可能性和正确分布
以及错误响应时间以及神经量以及它们如何随着设定的大小和目标分配者而变化
从猴子进行视觉搜索的先前收集的数据的可区分性。而我们以前
资助的研究旨在了解GAM中证据积累的结构以及
模型累加因素与FEF中运动相关的神经元的动力学,我们新提出的
研究旨在从计算上理解驱动积累及其其积累的证据的性质
与FEF中视觉响应性神经元的测量动力学的关系。 AIM 1比较
来自视觉响应神经元的侧向脑电图和神经递减的显着证据
对随机蓄能器网络进行视觉搜索作为输入证据以预测的猴子
行为。 AIM 2通过确定是否是否确定是否解决神经蓄能器框架的主要挑战
FEF中的运动神经元动力学实际上是渐变或步骤。 AIM 3评估替代体系结构
驱动积累的证据的抽象视觉注意模型(VAM)共同预测观察者
以及视觉响应性神经元的测量动力学。 AIM 4将VAM扩展到更复杂的视觉任务
涉及过滤和选择。结果将是对视觉过程的广泛理解
选择目标并控制眼动。诸如VAM和GAM之类的计算模型可能处于“正义
右”抽象水平。它们以解释神经活动的方式捕获了计算的基本细节
和单个参与者的行为,无论是猴子还是人类。这些模型可用于理解
正常行为以及疾病,残疾和疾病;最合适的参数可以表征
行为的个体差异,并为大脑测量提供标记。这些模型也可以告知
神经系统疾病在单个神经元和神经循环水平上具有生物物理基础,
提供有关神经元和电路如何计算的洞察力以及它们如何做到的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordon Dennis Logan其他文献
Gordon Dennis Logan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordon Dennis Logan', 18)}}的其他基金
Controlling visual cognition with visual working memory and long-term memory
用视觉工作记忆和长期记忆控制视觉认知
- 批准号:
9247953 - 财政年份:2015
- 资助金额:
$ 38.44万 - 项目类别:
Controlling visual cognition with visual working memory and long-term memory
用视觉工作记忆和长期记忆控制视觉认知
- 批准号:
8863035 - 财政年份:2015
- 资助金额:
$ 38.44万 - 项目类别:
Controlling visual cognition with visual working memory and long-term memory
用视觉工作记忆和长期记忆控制视觉认知
- 批准号:
9039086 - 财政年份:2015
- 资助金额:
$ 38.44万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
8817898 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
10250330 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
Stochastic Models of Visual Decision Making and Visual Search
视觉决策和视觉搜索的随机模型
- 批准号:
9187469 - 财政年份:2011
- 资助金额:
$ 38.44万 - 项目类别:
Modeling the Role of Priming in Executive Control
模拟启动在执行控制中的作用
- 批准号:
7439137 - 财政年份:2007
- 资助金额:
$ 38.44万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
- 批准号:
10735778 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Neurocognitive Mechanisms of Sentence Production Impairment in Aphasia
失语症句子产生障碍的神经认知机制
- 批准号:
10735595 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
Asian American Prevention Research: A Populomics Epidemiology Cohort (ARISE)
亚裔美国人预防研究:人口组学流行病学队列 (ARISE)
- 批准号:
10724884 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 38.44万 - 项目类别: