Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
基本信息
- 批准号:10461727
- 负责人:
- 金额:$ 59.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAffectAlgorithmsBasic ScienceBiologicalBiomedical ResearchComplexComputer softwareDNA MethylationDNA SequenceDataData AnalysesData AnalyticsData SetDatabase Management SystemsDevelopmentFarGoGene ExpressionGoalsInvestigationLaboratoriesMeasurementMeasuresMethodologyMolecularNational Research CouncilNucleic AcidsOutcomeProtocols documentationProvincePublicationsResearch PersonnelSamplingScanningSignal TransductionSourceStatistical MethodsSystematic BiasTechniquesTechnologyTranslational ResearchVariantWorkbaseclinical applicationdisease phenotypeflexibilityfrontierhigh throughput technologyindexinginterestprecision medicinesuccesstool
项目摘要
Project Summary
Biomedical research and the basic sciences are increasingly dependent on high-throughput technologies that have the
ability to simultaneously measure thousands of nucleic acid molecules in a sample. In combination with ingenious
laboratory protocols, these technologies have permitted unprecedented ways of studying the molecular basis of
disease and phenotypic variation. As a result of the increasing adoption of these technologies, more investigations
rely on complex datasets and require the development of new statistical techniques to adequately interpret data.
Today, high-throughput technologies applications go far beyond their original task of studying DNA sequence
itself and also include the measurement of quantitative and dynamic outcomes such as gene expression levels and
DNA methylation (DNAm) status. These quantitative and dynamic outcomes introduce levels of variability that
give rise to further data analytic challenges related to distinguishing unwanted sources of variability from bio-
logically relevant signals. Furthermore, when measuring these quantitative outcomes, data are subject to severe
technological and biological biases that can substantially impact downstream analyses. Our group has previously
demonstrated that statistical methodology can provide great improvements over ad-hoc algorithms offered as de-
faults by technology developers. Our highly cited statistical methodology and our widely used software demonstrate
the success of our work.
The National Research Council's Frontiers in Massive Data Analysis publication states that, “the challenges
for massive data go beyond the storage, indexing, and querying that have been the province of classical database
systems and instead hinge on the ambitious goal of inference”. Inference is particularly relevant in biomedical
applications since we often look to draw conclusions based on observed differences between groups in the presence
of within group variability. Two particularly challenging tasks relate to performing valid inference when 1) we
perform scans over large spaces to identify small regions of interests and 2) the data is affected by unexpected
systematic bias or batch effects. We will focus on these two general challenges. Our specific proposal is to work on
the most urgent needs of researchers facing new challenges as they increasingly rely on high-throughput techniques.
We will leverage the expertise of our collaborators to prioritize projects. We greatly appreciate the flexibility
permitted by the R35 mechanism as it will help us maximize the impact of our work.
项目摘要
生物医学研究和基本科学越来越依赖于具有的高通量技术
能够同时测量样品中数千个核酸分子。结合巧妙的
实验室协议,这些技术允许前所未有的方法研究分子基础
疾病和表型变异。由于这些技术的采用越来越多,更多的调查
依靠复杂的数据集并需要开发新的统计技术来充分解释数据。
如今,高通量技术应用程序远远超出了其研究DNA序列的最初任务
本身,还包括测量定量和动态结果,例如基因表达水平和
DNA甲基化(DNAM)状态。这些定量和动态结果引入了可变性水平
引起进一步的数据分析挑战,与将不良变异源与生物区分开
逻辑相关信号。此外,在测量这些定量结果时,数据会遭受严重的影响
可能会影响下游分析的技术和生物偏见。我们的小组以前有
证明统计方法论可以提供比临时算法的巨大改进
技术开发人员的故障。我们高度引用的统计方法论和我们广泛使用的软件证明了
我们工作的成功。
国家研究委员会在大规模数据分析中的前沿出版物指出,“挑战
对于大量数据,超越了作为古典数据库省的存储,索引和查询
系统,而取决于雄心勃勃的推理目标”。推论在生物医学中特别相关
应用程序,因为我们经常希望根据在存在下的组之间观察到的差异来得出结论
组内变异性。两个特别挑战任务与执行有效推断有关时的任务1)
在大空间上进行扫描以识别兴趣的小区域,2)数据伴随着意外
系统偏见或批处理效应。我们将专注于这两个一般挑战。我们的特殊建议是从事
研究人员越来越依赖高通量技术,面临新挑战的最紧迫需求。
我们将利用合作者的专业知识来确定项目的优先级。我们非常感谢灵活性
R35机制允许,因为它将有助于我们最大程度地发挥作品的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafael Angel Irizarry其他文献
Rafael Angel Irizarry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rafael Angel Irizarry', 18)}}的其他基金
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
9979396 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10666501 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10267687 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10448436 - 财政年份:2020
- 资助金额:
$ 59.68万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
9922327 - 财政年份:2019
- 资助金额:
$ 59.68万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10159937 - 财政年份:2019
- 资助金额:
$ 59.68万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10612937 - 财政年份:2019
- 资助金额:
$ 59.68万 - 项目类别:
Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
- 批准号:
8829975 - 财政年份:2014
- 资助金额:
$ 59.68万 - 项目类别:
Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
- 批准号:
9130901 - 财政年份:2014
- 资助金额:
$ 59.68万 - 项目类别:
Analysis Tools and Software for Second Generation Sequencing Data
第二代测序数据的分析工具和软件
- 批准号:
8806870 - 财政年份:2010
- 资助金额:
$ 59.68万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 59.68万 - 项目类别: