Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
基本信息
- 批准号:9130901
- 负责人:
- 金额:$ 20.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-29 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAlgorithmsApplied ResearchArtsBig DataBiomedical ResearchBiometryCase Based LearningCase StudyCase-Control StudiesCommunicationCommunitiesComputerized Medical RecordCountryDataData AnalysesData AnalyticsData ScienceData SetDevelopmentE-learningEducational BackgroundEducational CurriculumEducational process of instructingEducational workshopEngineeringEnrollmentExerciseFacultyFutureGenomicsGoalsHealthImageInterdisciplinary StudyKnowledgeKnowledge acquisitionLearningLearning ModuleLicensingModelingMolecularPaperParticipantPhysiologicalProductivityPublic Health SchoolsPythonsResearchResearch PersonnelResourcesSchoolsScienceSelf AssessmentSoftware EngineeringStatistical Data InterpretationStudentsTechniquesTechnologyTimeTrainingUniversitiesWorkbasebig biomedical datacase-basedcomputer sciencedata visualizationdata wranglingdigitaleducation researchexperienceflexibilitygenomic dataimprovedinstructorknowledge baselearning strategylecturesmassive open online coursesmeetingsonline courseopen sourcepractical applicationprogramsresponseskillsstatistics
项目摘要
DESCRIPTION: Unprecedented advances in digital technology during the second half of the 20th century have produced a Big Data revolution that is transforming science, including health and biomedical research. Scientific fields that have traditionally relied upon simple data analysis
techniques of smaller datasets have been transformed recently by technologies that continue to expand the possibilities of observing and deciphering molecular entities in an unprecedented way. However, training for the necessary skills and knowledge bases needed to fully leverage big data has lagged behind. The Departments of Biostatistics, Computer Science, and Statistics at Harvard University are partnering with Harvard's Massively Open Online Course (MOOC) initiative, HarvardX, to propose the development of a Biomedical Data Science Online Curriculum. Through this partnership we plan to develop a rigorous and practical curriculum in this nascent field. The overall objective of the proposed research education program is to help prepare the biomedical research community for the Big Data revolution. To accomplish this, we will develop a modular online education program that brings together concepts from Statistics, Computer Science and Software Engineering. Our curriculum will be motivated by real world problems and will serve a wide variety of students with different backgrounds and data analytic needs. Its centerpiece will be a course dedicated to case studies from genomics, imaging and electronic medical records. The case studies will not be artificial in any way and will include all
the nuances and grind work associated with modern data analysis. Our specific aims will include: 1) develop and teach an online Biomedical Data Science Curriculum, 2) make the curriculum available in ongoing fashion via the open source edX platform, and 3) disseminate the knowledge gained from preparing and teaching this curriculum. We have put together a team from across Harvard that includes the developers of Harvard's first Data Science class, the faculty of HarvardX's two data analysis online courses, and faculty with expertise analyzing biomedical big data. This team will collaborate to develop a modular, yet fully integrated, set of focused mini- lectures and assessments that will serve as a model for future massively open, self-access online curricula.
描述:20 世纪下半叶,数字技术取得了前所未有的进步,引发了一场大数据革命,这场革命正在改变科学,包括健康和生物医学研究。传统上依赖简单数据分析的科学领域
最近,一些技术已经改变了较小数据集的技术,这些技术继续以前所未有的方式扩大观察和破译分子实体的可能性。然而,充分利用大数据所需的必要技能和知识基础的培训却滞后。哈佛大学生物统计学、计算机科学和统计学系正在与哈佛大学的大规模开放在线课程 (MOOC) 计划HarvardX 合作,提议开发生物医学数据科学在线课程。通过这种合作关系,我们计划在这个新兴领域开发严格且实用的课程。拟议的研究教育计划的总体目标是帮助生物医学研究界为大数据革命做好准备。为了实现这一目标,我们将开发一个模块化的在线教育计划,该计划汇集了统计学、计算机科学和软件工程的概念。我们的课程将以现实世界问题为动力,为具有不同背景和数据分析需求的各类学生提供服务。其核心课程将是一门致力于基因组学、成像和电子病历案例研究的课程。案例研究不会以任何方式人为地进行,并且将包括所有
与现代数据分析相关的细微差别和苦差事。我们的具体目标包括:1) 开发和教授在线生物医学数据科学课程,2) 通过开源 edX 平台持续提供该课程,3) 传播从准备和教授该课程中获得的知识。我们组建了一支来自哈佛大学的团队,其中包括哈佛首个数据科学课程的开发人员、HarvardX 两门数据分析在线课程的教师,以及具有生物医学大数据分析专业知识的教师。该团队将合作开发一套模块化但完全集成的、集中的迷你讲座和评估,作为未来大规模开放、自助访问的在线课程的模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rafael Angel Irizarry其他文献
Rafael Angel Irizarry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rafael Angel Irizarry', 18)}}的其他基金
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
9979396 - 财政年份:2020
- 资助金额:
$ 20.45万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10666501 - 财政年份:2020
- 资助金额:
$ 20.45万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10267687 - 财政年份:2020
- 资助金额:
$ 20.45万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10448436 - 财政年份:2020
- 资助金额:
$ 20.45万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10461727 - 财政年份:2019
- 资助金额:
$ 20.45万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
9922327 - 财政年份:2019
- 资助金额:
$ 20.45万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10159937 - 财政年份:2019
- 资助金额:
$ 20.45万 - 项目类别:
Data Analysis Tools for Emerging High-Throughput Technologies
适用于新兴高通量技术的数据分析工具
- 批准号:
10612937 - 财政年份:2019
- 资助金额:
$ 20.45万 - 项目类别:
Biomedical Data Science Online Curriculum on HarvardX
HarvardX 生物医学数据科学在线课程
- 批准号:
8829975 - 财政年份:2014
- 资助金额:
$ 20.45万 - 项目类别:
Analysis Tools and Software for Second Generation Sequencing Data
第二代测序数据的分析工具和软件
- 批准号:
8280415 - 财政年份:2010
- 资助金额:
$ 20.45万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Programmable peptide-guided protein degradation
可编程肽引导的蛋白质降解
- 批准号:
10741655 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Developing a Childhood Asthma Risk Passive Digital Marker
开发儿童哮喘风险被动数字标记
- 批准号:
10571461 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
Association of Phenotypes and Genotype with Treatment Response in Psoriatic Arthritis
表型和基因型与银屑病关节炎治疗反应的关联
- 批准号:
10723557 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别:
A deep learning algorithm to detect signs of cognitive impairment in electronic health records
用于检测电子健康记录中认知障碍迹象的深度学习算法
- 批准号:
10900991 - 财政年份:2023
- 资助金额:
$ 20.45万 - 项目类别: