Investigating Mechanisms of Deregulated Nucleotide Metabolism in Cancer
研究癌症中核苷酸代谢失调的机制
基本信息
- 批准号:10452714
- 负责人:
- 金额:$ 36.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmino Acid SubstitutionAnabolismApoptosisB-LymphocytesBiochemicalBiochemistryCRISPR/Cas technologyCancer ModelCancer cell lineCell LineageCell ProliferationCell SurvivalCellsChemistryChimerismComplexCre-LoxPCytosolCytotoxic ChemotherapyDNA Polymerase IDNA Polymerase IIDNA Polymerase IIIDNA-Directed RNA PolymeraseDataDependenceDevelopmentDiphosphatesEconomicsEnzymatic BiochemistryEnzymesFeedbackFoundationsFutureGene ExpressionGeneticGenetic TranscriptionGenetically Engineered MouseGrowthHematopoieticHomoHomologous GeneHumanImmunologicsIndividualIntelligenceKnockout MiceLeadLesionLinkLymphomaLymphomagenesisMYC geneMalignant NeoplasmsMetabolicMetabolismMicroscopyModelingMolecularMolecular BiologyMultienzyme ComplexesMultiple MyelomaMusNatural regenerationNormal CellNormal tissue morphologyNucleic AcidsNucleotide BiosynthesisNucleotidesOncogenicOutputPathway interactionsPatientsPentosephosphate PathwayPhenotypePhysiologyProductionProliferatingPropertyPurinesPyrimidineRNA chemical synthesisRefractoryResearchResolutionRiboseRibose-Phosphate PyrophosphokinaseRoleRouteStable Isotope LabelingStructural ModelsStructureTestingTherapeuticTissuesToxic effectWorkanti-cancerbasec-myc Genescancer cellcytotoxicdesignenzyme activitygenetic approachinorganic phosphateliquid chromatography mass spectrometryloss of functionmouse modelmutantnext generationnovelnucleic acid biosynthesisnucleotide metabolismoverexpressionprogramspyridinerational designsingle moleculestoichiometrytherapeutically effectivetumortumor metabolism
项目摘要
PROJECT SUMMARY
Many cancers are currently treated by cytotoxic chemotherapies that exploit those cancers' dependence on
enhanced nucleotide biosynthesis. However, the cytotoxic properties which make these compounds so
efficacious in killing cancer cells also wreak havoc on normal proliferating cells and tissues. In order to
understand how to exploit this vulnerability more effectively and more safely, we must focus our efforts on
targets that are specifically required by cancer cell, but not normal cell, proliferation and survival. My
discoveries have identified one such target – the enzyme phosphoribosyl pyrophosphate synthetase 2
(PRPS2). PRPS2, and its homolog PRPS1, generate a critical precursor necessary for producing all
nucleotides and function as a `molecular throttle' capable of increasing or decreasing the rate at which these
genetic building blocks are made. This proposal seeks to unravel the molecular basis for this selectivity
through use of metabolic flux analysis, elegant structure/function studies, and bioorthogonal chemistry and
molecular biology approaches. Our studies will open up new avenues for understanding the metabolic
vulnerabilities of cancer cells and may lead to intelligently-designed rational therapeutic strategies of the future.
We will conduct our studies using models of MYC-driven lymphoma and myeloma, using both genetically-
engineered mouse models and human cancer cell lines. Importantly, MYC has been characterized as the
transcriptional engine of cancer and its ability to stimulate nucleotide and nucleic acid production are signature
features of its pro-growth anabolic program necessary to drive malignancies in the B cell lineage. Using our
genetic approaches that block PRPS2 function in MYC overexpressing cells, we can leverage this dependency
to decipher the mechanistic basis for the deregulation of nucleotide metabolism in MYC-overexpressing cancer
cells and uncover novel connections between critical nodes in the nucleotide metabolism network. For
example, our proposed studies will elucidate the economics of nucleotide metabolism by determining how
disrupting nucleotide supply affects the machineries it fuels, and vice-versa. Collectively, the proposed studies
will be transformative in our understanding of the roles of these key molecules in the normal and cancer
setting, and provide a new conceptual paradigm which can be the foundation for the development of the next
generation of safer, more effective precision-based therapies and approaches.
项目概要
目前,许多癌症通过细胞毒性化疗来治疗,这些化疗利用了这些癌症对
然而,这些化合物的细胞毒性特性使得核苷酸生物合成增强。
有效杀死癌细胞的同时也会对正常增殖的细胞和组织造成严重破坏。
了解如何更有效、更安全地利用此漏洞,我们必须集中精力
癌细胞(而非正常细胞)增殖和存活特别需要的靶标。
发现已经确定了这样一个目标——磷酸核糖焦磷酸合成酶 2
(PRPS2) 及其同源物 PRPS1,生成产生所有必需的关键前体。
核苷酸并起到“分子节流阀”的作用,能够增加或减少这些物质的速率
该提议旨在揭示这种选择性的分子基础。
通过使用代谢流分析、优雅的结构/功能研究和生物正交化学和
我们的研究将为理解代谢开辟新的途径。
癌细胞的脆弱性,可能会导致未来智能设计的合理治疗策略。
我们将使用 MYC 驱动的淋巴瘤和骨髓瘤模型进行研究,同时使用遗传-
重要的是,MYC 已被定性为工程小鼠模型和人类癌细胞系。
癌症的转录引擎及其刺激核苷酸和核酸产生的能力是标志
其促生长合成代谢程序的特征是驱动 B 细胞谱系恶性肿瘤所必需的。
阻止 MYC 过表达细胞中 PRPS2 功能的遗传方法,我们可以利用这种依赖性
破译 MYC 过表达癌症中核苷酸代谢失调的机制基础
细胞并揭示核苷酸代谢网络中关键节点之间的新连接。
例如,我们提出的研究将通过确定如何进行核苷酸代谢来阐明核苷酸代谢的经济学
扰乱核苷酸供应会影响其提供燃料的机器,反之亦然。
将彻底改变我们对这些关键分子在正常和癌症中的作用的理解
设定,并提供一个新的概念范式,可以为下一步的发展奠定基础
产生更安全、更有效的精准疗法和方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tom Cunningham其他文献
Tom Cunningham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tom Cunningham', 18)}}的其他基金
Defining the biological roles of PRPS isozymes in normal and diseased settings
定义 PRPS 同工酶在正常和患病环境中的生物学作用
- 批准号:
10609812 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别:
Investigating Mechanisms of Deregulated Nucleotide Metabolism in Cancer
研究癌症中核苷酸代谢失调的机制
- 批准号:
10671540 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别:
Investigating Mechanisms of Deregulated Nucleotide Metabolism in Cancer
研究癌症中核苷酸代谢失调的机制
- 批准号:
10225501 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别:
Defining the biological roles of PRPS isozymes in normal and diseased settings
定义 PRPS 同工酶在正常和患病环境中的生物学作用
- 批准号:
10394225 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别:
相似国自然基金
吡喃糖骨架双功能催化剂设计及其应用于α-四取代碳-α-氨基酸衍生物的不对称催化合成
- 批准号:22361009
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氟取代氨基酸修饰P450DA单加氧酶合成手性β-卤代醇的研究
- 批准号:32060215
- 批准年份:2020
- 资助金额:33 万元
- 项目类别:地区科学基金项目
氟代烷基取代的Cα-季碳氨基酸的不对称催化合成研究
- 批准号:21901074
- 批准年份:2019
- 资助金额:26.5 万元
- 项目类别:青年科学基金项目
功能化氮取代聚氨基酸的设计合成与性质研究
- 批准号:21704050
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向肿瘤氨基酸转运体N-取代氨基酸PET显像剂的研制及其作用机理研究
- 批准号:81371584
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Serogroup 19 capsule maleability leading to vaccine failure
血清群 19 胶囊的雄性能力导致疫苗失败
- 批准号:
10723991 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Mechanistic role of phosphatidylinositol 5-phosphate 4-kinase beta in GTP-dependent lysosomal acidification for stress-resilient cell growth and metabolism
磷脂酰肌醇5-磷酸4-激酶β在GTP依赖性溶酶体酸化对应激恢复细胞生长和代谢中的机制作用
- 批准号:
10592707 - 财政年份:2022
- 资助金额:
$ 36.71万 - 项目类别:
Investigating Mechanisms of Deregulated Nucleotide Metabolism in Cancer
研究癌症中核苷酸代谢失调的机制
- 批准号:
10225501 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别:
Investigating Mechanisms of Deregulated Nucleotide Metabolism in Cancer
研究癌症中核苷酸代谢失调的机制
- 批准号:
10671540 - 财政年份:2019
- 资助金额:
$ 36.71万 - 项目类别: