Mechanistic role of phosphatidylinositol 5-phosphate 4-kinase beta in GTP-dependent lysosomal acidification for stress-resilient cell growth and metabolism
磷脂酰肌醇5-磷酸4-激酶β在GTP依赖性溶酶体酸化对应激恢复细胞生长和代谢中的机制作用
基本信息
- 批准号:10592707
- 负责人:
- 金额:$ 37.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAmino Acid SubstitutionAnabolismAutophagocytosisBindingBiogenesisCatabolismCell ProliferationCellsCellular Metabolic ProcessCellular StressCollaborationsCoupledCytoprotectionDegradation PathwayDependenceDiseaseEmbryoEnergy MetabolismEnzymesExhibitsFamilyFastingFibroblastsGenesGeneticGenetic TranscriptionGrowthGuanosine TriphosphateHeartHepaticHepatocyteHigh Fat DietHomeostasisHypoglycemiaInsulin ResistanceIsoenzymesKnock-in MouseKnock-outLaboratoriesLipidsLiverLysosomesMalignant NeoplasmsMediatingMetabolicMetabolic DiseasesMetabolismModelingMolecularMusObesityOrganellesPIK3CG genePathogenesisPathologyPhenotypePhosphatidylinositolsPhosphotransferasesPhysiologicalPlayPredispositionProductivityPropertyProteinsProteomicsReactive Oxygen SpeciesRegulationReportingResearchRoleSecond Messenger SystemsSignal TransductionStressSystemTestingWisconsincell growthhuman diseaseinhibition of autophagyinhibitorinorganic phosphateinsulin sensitivitykinase inhibitorknock-downmultidisciplinarynovelnutrient deprivationpharmacologicphosphatidylinositol 5-phosphatepublic health relevancerecruitresponsereverse geneticsscaffoldscreeningsensorstress resiliencetumortumorigenesisvacuolar H+-ATPase
项目摘要
Increased anabolism is a common feature of tumors and several metabolic diseases. The high anabolic state is
typically accompanied by systemic suppression of catabolism (e.g., lysosome biogenesis and autophagy).
Paradoxically, the anabolic cells increase dependence on the lysosomal degradation pathways to counteract the
obligately increased stresses, such as malfunctioned organelle and reactive oxygen species. However, the
molecular mechanism of how cells activate lysosomal functions regardless of their anabolic state remains largely
unknown. Phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) is a family of enzymes, consisting of PI5P4Kα, β,
γ, and converts the lipid second messenger, phosphatidylinositol 5-phosphate (PI5P), to phosphatidylinositol
4,5-phosphate (PI(4,5)P2). The main function of PI5P4K is considered to control PI5P-dependent signaling, as
the bulk of PI(4,5)P2 is generated from another family of enzymes, PI4P5Ks. Genetic deletion studies of the three
genes in the PI5P4K family (Pip4k2a, Pip4k2b, and Pip4k2c) in mice indicate that PI5P4Kβ plays distinct and
critical roles in mediating cellular responses to stress (e.g., nutrient deprivation, ROS) and ultimately affect
whole-body insulin sensitivity, growth, obesity, and cancer. Importantly, PI5P4Ks are atypical kinases that have
a unique property to use GTP as a phosphodonor. In particular, PI5P4Kβ preferentially uses GTP rather than
ATP, and its kinase activity is regulated by physiological GTP concentrations, acting as a cellular GTP sensor
for metabolism and tumorigenesis by mechanisms yet to be defined. Pertaining to this proposal, our group has
developed isozyme selective PI5P4K inhibitors using newly developed NMR-based screening, and found that
treatment of the PI5P4K inhibitors suppressed lysosome acidification. Newly generated GTP-insensitive
Pip4k2bF205L/F205L mice developed severe steatosis compared to WT mice, and exhibited increased hypoglycemia
upon fasting, resembling the phenotype of autophagy deficiency. We hypothesize that GTP-dependent PI5P4Kβ
activation promotes lysosomal acidification to counterbalance the anabolic stress for stress-resilient cellular
growth and hepatic functions. Capitalizing on our long-standing, productive collaborations with a number of
cutting-edge laboratories, we will define the mechanistic role of PI5P4Kβ in transcriptionally-independent
lysosomal acidification and stress-resilient growth. Using the “structural reverse-genetics” framework that we
have developed recently, we will dissect and determine the role of kinase activity and scaffolding functions of
PI5P4Kβ (Aim 1). We will test the hypothesis that GTP-dependent PI5P4Kβ activity is required for hepatic
lysosomal function and whole-body energy homeostasis (Aim 2). Upon completing the proposed research, we
will identify the novel stress counteracting system through which GTP-mediated activation of PI5P4Kβ promotes
lysosomal activation to support stress-resilient anabolic cell growth and protect mice from the pathogenesis of
metabolic diseases.
合成代谢增加是肿瘤和几种代谢疾病的共同特征。
通常伴随着分解代谢的系统性抑制(例如,溶酶体生物发生和自噬)。
矛盾的是,合成代谢细胞增加了对溶酶体降解途径的依赖,以抵消
必然增加的压力,例如细胞器故障和活性氧。
无论其合成代谢状态如何,细胞如何激活溶酶体功能的分子机制在很大程度上仍然存在
磷脂酰肌醇 5-磷酸 4-激酶 (PI5P4K) 是一个酶家族,由 PI5P4Kα、β、
γ,并将脂质第二信使磷脂酰肌醇 5-磷酸 (PI5P) 转化为磷脂酰肌醇
4,5-磷酸 (PI(4,5)P2) PI5P4K 的主要功能被认为是控制 PI5P 依赖性信号传导,如
大部分 PI(4,5)P2 是由另一个酶家族 PI4P5K 产生的,这三个酶的基因缺失研究。
小鼠中 PI5P4K 家族(Pip4k2a、Pip4k2b 和 Pip4k2c)中的基因表明 PI5P4Kβ 发挥独特且
在介导细胞对压力(例如营养剥夺、ROS)反应以及最终的反应中发挥关键作用
重要的是,PI5P4K 是与全身胰岛素敏感性、生长、肥胖和癌症相关的非典型激酶。
使用 GTP 作为磷酸供体的独特特性特别是,PI5P4Kβ 优先使用 GTP 而不是。
ATP 及其激酶活性受生理 GTP 浓度调节,充当细胞 GTP 传感器
关于代谢和肿瘤发生的机制尚未确定,我们的小组已经确定了这一点。
使用新开发的基于 NMR 的筛选开发了同工酶选择性 PI5P4K 抑制剂,并发现
PI5P4K 抑制剂的治疗抑制了新产生的 GTP 不敏感的溶酶体酸化。
与 WT 小鼠相比,Pip4k2bF205L/F205L 小鼠出现严重的脂肪变性,并表现出低血糖增加
禁食后,我们勇敢地重新组装了自噬缺陷的表型,即 GTP 依赖性 PI5P4Kβ。
激活促进溶酶体酸化,以平衡抗应激细胞的合成代谢应激
利用我们与许多公司的长期、富有成效的合作。
尖端实验室,我们将定义 PI5P4Kβ 在转录独立性中的机制作用
使用我们的“结构反向遗传学”框架来研究溶酶体酸化和抗应激生长。
最近发展起来,我们将剖析并确定激酶活性和支架功能的作用
PI5P4Kβ(目标 1):我们将检验肝脏需要依赖 GTP 的 PI5P4Kβ 活性这一假设。
溶酶体功能和全身能量稳态(目标 2)。
将确定新型压力对抗系统,GTP 介导的 PI5P4Kβ 激活可通过该系统促进
溶酶体激活支持抗应激合成代谢细胞生长并保护小鼠免受以下疾病的发病机制影响
代谢性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atsuo Sasaki其他文献
Atsuo Sasaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atsuo Sasaki', 18)}}的其他基金
Mechanistic role of phosphatidylinositol 5-phosphate 4-kinase beta in GTP-dependent lysosomal acidification for stress-resilient cell growth and metabolism
磷脂酰肌醇5-磷酸4-激酶β在GTP依赖性溶酶体酸化中对应激恢复细胞生长和代谢的机制作用
- 批准号:
10797540 - 财政年份:2022
- 资助金额:
$ 37.23万 - 项目类别:
Therapeutic resistance and aggressive malignancy in glioblastomas: the contribution of GTP metabolism through regulation by IMPDH2
胶质母细胞瘤的治疗耐药性和侵袭性恶性肿瘤:IMPDH2 调节 GTP 代谢的贡献
- 批准号:
10682618 - 财政年份:2021
- 资助金额:
$ 37.23万 - 项目类别:
Therapeutic resistance and aggressive malignancy in glioblastomas: the contribution of GTP metabolism through regulation by IMPDH2
胶质母细胞瘤的治疗耐药性和侵袭性恶性肿瘤:IMPDH2 调节 GTP 代谢的贡献
- 批准号:
10296056 - 财政年份:2021
- 资助金额:
$ 37.23万 - 项目类别:
Therapeutic resistance and aggressive malignancy in glioblastomas: the contribution of GTP metabolism through regulation by IMPDH2
胶质母细胞瘤的治疗耐药性和侵袭性恶性肿瘤:IMPDH2 调节 GTP 代谢的贡献
- 批准号:
10447195 - 财政年份:2021
- 资助金额:
$ 37.23万 - 项目类别:
Synthetic Lethal Combination of KRP203/Fingolimod with PI3K signaling for glioblastoma multiforme death by catastrophic vacuolization
KRP203/芬戈莫德与 PI3K 信号传导的合成致死组合可导致多形性胶质母细胞瘤灾难性空泡化死亡
- 批准号:
9335996 - 财政年份:2016
- 资助金额:
$ 37.23万 - 项目类别:
Synthetic Lethal Combination of KRP203/Fingolimod with PI3K signaling for glioblastoma multiforme death by catastrophic vacuolization
KRP203/芬戈莫德与 PI3K 信号传导的合成致死组合可导致多形性胶质母细胞瘤灾难性空泡化死亡
- 批准号:
9227435 - 财政年份:2016
- 资助金额:
$ 37.23万 - 项目类别:
Targeting the Novel PI5P4K Pathway to Induce Glioblastoma Senescence
靶向新的 PI5P4K 途径诱导胶质母细胞瘤衰老
- 批准号:
8935962 - 财政年份:2014
- 资助金额:
$ 37.23万 - 项目类别:
Targeting the Novel PI5P4K Pathway to Induce Glioblastoma Senescence
靶向新的 PI5P4K 途径诱导胶质母细胞瘤衰老
- 批准号:
8800075 - 财政年份:2014
- 资助金额:
$ 37.23万 - 项目类别:
Chemical probes that modulate a stress pathway phosphatidylinositol 5-phosphate 4
调节应激途径磷脂酰肌醇 5-磷酸 4 的化学探针
- 批准号:
8262562 - 财政年份:2012
- 资助金额:
$ 37.23万 - 项目类别:
Chemical Probes That Modulate Phosphatidylinositol-5-Phosphate 4-Kinase Activity
调节磷脂酰肌醇 5 磷酸 4 激酶活性的化学探针
- 批准号:
8403186 - 财政年份:2012
- 资助金额:
$ 37.23万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
High-throughput functional analysis and clinical relevance of all possible variants of a gene
基因所有可能变异的高通量功能分析和临床相关性
- 批准号:
10601908 - 财政年份:2023
- 资助金额:
$ 37.23万 - 项目类别:
Pharmacologic Inhibition of NLRP3 Inflammasome-Dependent Injury following Vaso-occlusion in Sickle Cell Disease
镰状细胞病血管闭塞后 NLRP3 炎症小体依赖性损伤的药理学抑制
- 批准号:
10258844 - 财政年份:2021
- 资助金额:
$ 37.23万 - 项目类别:
Site-directed RNA editing of Nav1.7 as a novel analgesic
Nav1.7 的定点 RNA 编辑作为新型镇痛药
- 批准号:
10398386 - 财政年份:2021
- 资助金额:
$ 37.23万 - 项目类别: