Latrophilin Function in Synapse Formation
Latrophilin 在突触形成中的功能
基本信息
- 批准号:10434957
- 负责人:
- 金额:$ 72.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesAffectArchitectureArrestinsBehaviorBindingBinding SitesBiologicalBiological ModelsBrainBrain regionC-terminalCell Adhesion MoleculesCellsCognitionCognitiveCommunicationComplexDataExcitatory SynapseFamilyFunctional disorderG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding ProteinsGenesGoalsHippocampus (Brain)HomoHumanImpaired cognitionImpairmentInterneuronsInvestigationLifeLigand BindingLigandsMaintenanceMediatingMolecularMusMutationNatureNeuronsPathogenesisPlayProcessPropertyProtein IsoformsProteinsProteolysisRoleShapesSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSiteSpecific qualifier valueSpecificityStructureSynapsesSynaptic TransmissionTestingVentral Striatumalpha-latrotoxin receptorbehavioral studybiophysical analysiscognitive changeentorhinal cortexexperimental studyextracellularin vivoinsightinterdisciplinary approachinterestneural circuitneuropsychiatric disorderpostnatalpostsynapticreceptorsynaptic functionsynaptogenesistooltranslational neuroscience
项目摘要
Neural circuits are constructed by synapses that connect neurons into vast networks. Although many neural circuits have been characterized, the molecular and cellular mechanisms that build their synaptic architecture remain largely unknown. During synapse formation that establishes the synaptic architecture of neural circuits, bi-directional signaling via trans-synaptic adhesion molecules is thought to control assembly of synapses. Strikingly, genetic changes in trans-synaptic adhesion molecules often predispose to neuropsychiatric disorders, suggesting that dysfunction of the synaptic architecture of neural circuits contributes to neuropsychiatric disorders, although the nature of these impairments is poorly understood. Our preliminary data show that in hippocampal neurons, formation of subsets of excitatory synapses requires latrophilins (Lphns), a family of three postsynaptic adhesion-GPCRs. Different Lphns mediate establishment of distinct synapses even in the same neuron, suggesting that they are involved not only in constructing synapses, but also in determining their specificity. How Lphns mediate synapse formation, and to what extent their synapse-formation function involves GPCR signaling or adhesive interactions, remains unknown. Moreover, SNPs in the human Lphn3 gene (ADGRL3) downregulate Lphn3 expression robustly. The present application proposes to examine the signaling mechanisms that mediate Lphn-dependent synapse formation, to explore how Lphns determine synapse specificity, and to investigate how changes in Lphn3 expression change synaptic function. Specifically, the proposed experiments will test the overall hypotheses that (1) Lphns control synapse formation and maintenance by a GPCR-mediated mechanism involving locally restricted signaling, that (2) different Lphn isoforms control formation of distinct synapses via sequence-specific differences in their protein interactions and GPCR function, and that (3) changes in Lphn3 expression impair formation of a specific subset of synapses. Three Specific Aims will test these hypotheses, thus targeting key questions that are most relevant for understanding how neural circuits are wired and how impairment of neural circuits alter cognition. Using both mouse and human neurons as a model system, the project will pursue broadly interdisciplinary approaches in both mice and human neurons that range from biophysical studies of ligand-receptor complexes to cell-biological investigations of intracellular signaling to behavioral studies probing for cognitive changes. Thereby, this application will provide insight into how Lphns drive synapse formation in mice, and how decreased expression of Lphn3 predisposes to synaptic changes in human neurons. Addressing these questions is of paramount interest in basic and translational neuroscience because neural circuits that process the brain’s information are constructed by synapse formation, and dysfunction or imbalance of synaptic communication in neural circuits likely underlies the pathogenesis of neuropsychiatric disorders.
神经回路是由将神经元连接成巨大网络的突触构建的,尽管许多神经回路已经被表征,但在建立神经回路突触结构的突触形成过程中,构建其突触结构的分子和细胞机制仍然很大程度上未知。通过跨突触粘附分子的信号传导被认为可以控制突触的组装,引人注目的是,跨突触粘附分子的遗传变化往往容易导致神经精神疾病。神经回路突触结构的功能障碍会导致神经精神疾病,尽管我们对这些损伤的性质知之甚少,但我们的初步数据表明,在海马神经元中,兴奋性突触亚群的形成需要懒惰蛋白(Lphns),这是一个由三个突触后蛋白组成的家族。即使在同一神经元中,不同的 Lphns 也会介导不同突触的建立,这表明它们不仅参与突触的构建,此外,Lphn 如何介导突触形成,以及它们的突触形成功能在多大程度上涉及 GPCR 信号传导或粘附相互作用,目前仍不清楚。该申请旨在检查介导 Lphn 依赖性突触形成的信号机制,探索 Lphn 如何确定突触特异性,并研究 Lphn3 的变化如何具体来说,所提出的实验将测试以下总体假设:(1) Lphn 涉及通过 GPCR 介导的局部信号传导机制控制突触形成和维持,(2) 不同的 Lphn 亚型通过序列控制限制性突触的形成 -它们的蛋白质相互作用和 GPCR 功能的具体差异,以及 (3) Lphn3 表达的变化会损害特定突触子集的形成,三个具体目标将测试这些假设,从而针对以下关键问题。与理解神经回路如何连接以及神经回路损伤如何改变认知最相关,该项目将使用小鼠和人类神经元作为模型系统,在小鼠和人类神经元中寻求广泛的跨学科方法,范围包括配体的生物物理学研究。受体复合物到细胞内信号传导的细胞生物学研究,到探索认知变化的行为研究,因此,该应用将深入了解 Lphn 如何驱动小鼠突触形成,以及 Lphn3 表达减少如何导致突触发生。解决这些问题对于基础神经科学和转化神经科学至关重要,因为处理大脑信息的神经回路是通过突触形成构建的,神经回路中突触通讯的功能障碍或不平衡可能是神经精神疾病的发病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas C. Sudhof其他文献
Presynaptic Neurexin-3 Alternative Splicing Trans-Synaptically Controls Postsynaptic AMPA-Receptor Traficking
突触前 Neurexin-3 选择性剪接跨突触控制突触后 AMPA 受体运输
- DOI:
- 发表时间:
- 期刊:
- 影响因子:64.5
- 作者:
Jason Aoto;David C Martinelli;Robert C Malenka;Katsuhiko Tabuchi;Thomas C. Sudhof - 通讯作者:
Thomas C. Sudhof
Thomas C. Sudhof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas C. Sudhof', 18)}}的其他基金
Latrophilin Function in Synapse Formation
Latrophilin 在突触形成中的功能
- 批准号:
10611452 - 财政年份:2021
- 资助金额:
$ 72.86万 - 项目类别:
Regulation of cholesterol by y-secretase and ApoE: Implications for AD pathogenesis and synaptic function
γ-分泌酶和 ApoE 对胆固醇的调节:对 AD 发病机制和突触功能的影响
- 批准号:
10601030 - 财政年份:2021
- 资助金额:
$ 72.86万 - 项目类别:
Regulation of cholesterol by y-secretase and ApoE: Implications for AD pathogenesis and synaptic function
γ-分泌酶和 ApoE 对胆固醇的调节:对 AD 发病机制和突触功能的影响
- 批准号:
10379401 - 财政年份:2021
- 资助金额:
$ 72.86万 - 项目类别:
Latrophilin Function in Synapse Formation
Latrophilin 在突触形成中的功能
- 批准号:
10274019 - 财政年份:2021
- 资助金额:
$ 72.86万 - 项目类别:
The role of Myt1l in the developing and adult mouse brain
Myt1l 在发育中和成年小鼠大脑中的作用
- 批准号:
9904331 - 财政年份:2019
- 资助金额:
$ 72.86万 - 项目类别:
The role of Myt1l in the developing and adult mouse brain
Myt1l 在发育中和成年小鼠大脑中的作用
- 批准号:
10579921 - 财政年份:2019
- 资助金额:
$ 72.86万 - 项目类别:
The role of Myt1l in the developing and adult mouse brain
Myt1l 在发育中和成年小鼠大脑中的作用
- 批准号:
10333320 - 财政年份:2019
- 资助金额:
$ 72.86万 - 项目类别:
Control of long-term synaptic plasticity by neurexin ligands
神经毒素配体控制长期突触可塑性
- 批准号:
8854549 - 财政年份:2015
- 资助金额:
$ 72.86万 - 项目类别:
相似国自然基金
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 72.86万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 72.86万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 72.86万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 72.86万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 72.86万 - 项目类别: