Identification of novel blood-based biomarkers of Alzheimer's Disease by pseudotime analysis

通过伪时间分析鉴定阿尔茨海默病的新型血液生物标志物

基本信息

项目摘要

PROJECT SUMMARY Alzheimer's Disease (AD) is the most prevalent neurodegenerative disease in United States. Current medications are only effective at improving the symptoms for a short period of time and blood-based biomarkers for the disease are only recently beginning to emerge in research and clinical practice. In this proposal we aim to apply pseudotime analysis on publicly available RNA profiling data to detect both novel molecular processes in brain tissue and blood-based RNA biomarkers associated with AD progression. Pseudotime algorithms are machine learning approaches capable of extracting latent temporal information to order samples along a pseudotemporal progression. These approaches utilize cross-sectional data without the need of disease stage information or longitudinal specimen sampling making them uniquely well suited to the large collection of cross-sectional gene expression data currently available for AD. In Aim 1 we will focus on post-mortem brain gene expression analysis, using RNA sequencing data from bulk sampled brain tissue as well as single cell sequencing studies (e.g., Mount Sinai, ROSMAP) that include clinical and neuropathological variables related to AD staging. After extracting the pseudotime trajectories with the phenoPath method, we will prioritize genes according to their statistical correlation with pseudotime. Molecular processes associated with disease onset and progression will be inferred by Weighted Gene Coexpression Network Analysis (WGCNA). In Aim 2 we will focus on RNA expression profiling data from whole blood. Pseudotime trajectories will be determined from existing AD patient blood-based gene expression data as in aim 1, and genes will be prioritized according to their correlation with pseudotime. Then, we will retain genes highly correlated with pseudotime that simultaneously exhibit significant differential expression when compared to control samples, with the goal of finding genes that demonstrate a gradient of expression change from a non-pathological to a pathological stage that are also correlated with disease progression. Finally, we will validate the findings obtained from whole blood in post-mortem brain data from Aim 1, to assess the correlation with the gold- standard neuropathological-based staging. The findings from this proposal will allow us to identify targets for new AD treatments and identify potential candidate blood-based biomarkers of AD progression.
项目摘要 阿尔茨海默氏病(AD)是美国最普遍的神经退行性疾病。当前的 药物仅在短时间内有效改善症状和基于血液的症状 该疾病的生物标志物直到最近才在研究和临床实践中出现。 在此提案中,我们旨在将伪分析应用于公开可用的RNA分析数据以检测 与AD进展相关的脑组织和基于血液的RNA生物标志物中的新分子过程。 伪段算法是能够将潜在时间信息提取到的机器学习方法 沿伪颞进程的订单样品。这些方法利用横截面数据没有 需要疾病阶段信息或纵向标本采样,使其非常适合于 当前可用于AD的大量横截面基因表达数据。 在AIM 1中,我们将使用RNA测序数据的数据,以此 批量抽样脑组织以及单细胞测序研究(例如,西奈山,rosmap)包括 临床和神经病理学变量与AD分期有关。在提取伪段轨迹之后 该苯酚法,我们将根据基因与假频率的统计相关性优先考虑其优先级。 与疾病发作和进展相关的分子过程将通过加权基因推断 共表达网络分析(WGCNA)。 在AIM 2中,我们将重点关注来自全血的RNA表达分析数据。伪段轨迹将是 由AIM 1中的现有AD患者血液基因表达数据确定,基因将是 根据它们与假期的相关性优先级。然后,我们将保留与高度相关的基因 与对照样品相比 目的是找到证明表达梯度从非病理到一个的基因的变化 病理阶段也与疾病进展相关。最后,我们将验证发现 从AIM 1的验尸大脑数据中从全血中获得,以评估与金的相关性 标准神经病理学分期。该提案的发现将使我们能够确定 新的AD处理,并确定潜在的候选血液进展生物标志物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ignazio Stefano Piras其他文献

Y-chromosome 10 locus short tandem repeat haplotypes in a population sample from Sicily Italy.
意大利西西里岛人口样本中 Y 染色体 10 位点短串联重复单倍型。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Maria Elena Ghiani;Ignazio Stefano Piras;R. John Mitchell;G. Vona
  • 通讯作者:
    G. Vona
Population genetic data on four STR loci, PAI (CA)<sub><em>n</em></sub>, GpIIIa (CT)<sub><em>n</em></sub>, PLAT (TG)<sub>14</sub> (CA)<sub>12</sub>, and NOS2A (CCTTT)<sub><em>n</em></sub>, in Mediterranean populations
  • DOI:
    10.1016/j.legalmed.2007.01.001
  • 发表时间:
    2007-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alessandra Falchi;Ignazio Stefano Piras;Laurianne Giovannoni;Pedro Moral;Giuseppe Vona;Laurent Varesi
  • 通讯作者:
    Laurent Varesi

Ignazio Stefano Piras的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ignazio Stefano Piras', 18)}}的其他基金

Transcriptomic assessment of pathology in PD with dementia and dementia with Lewy Bodies using iPSC neurons and brain tissue of the same individuals
使用同一个体的 iPSC 神经元和脑组织对帕金森病痴呆和路易体痴呆进行病理学转录组评估
  • 批准号:
    10511261
  • 财政年份:
    2022
  • 资助金额:
    $ 19.2万
  • 项目类别:
Genomic determinants of sleep traits as risk and protective factors for Alzheimer's disease
睡眠特征的基因组决定因素作为阿尔茨海默病的风险和保护因素
  • 批准号:
    10453007
  • 财政年份:
    2022
  • 资助金额:
    $ 19.2万
  • 项目类别:

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
  • 批准号:
    10715238
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
  • 批准号:
    10704673
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
  • 批准号:
    10610975
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了