Genomic determinants of sleep traits as risk and protective factors for Alzheimer's disease
睡眠特征的基因组决定因素作为阿尔茨海默病的风险和保护因素
基本信息
- 批准号:10453007
- 负责人:
- 金额:$ 19.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Abeta synthesisAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease riskAmyloidBioinformaticsBrainBrain regionCandidate Disease GeneCerebrospinal FluidClinicalComplexComputer softwareDataData AnalysesData SetDetectionDevelopmentDiseaseDisease OutcomeDisease ProgressionEtiologyFutureGene ExpressionGenesGeneticGenetic DiseasesGenetic TranscriptionGenomicsHabitsHeterogeneityImpaired cognitionInterventionLegLife StyleLightLinkage DisequilibriumMendelian randomizationMethodsMolecularMovement DisordersNeurodegenerative DisordersNeurofibrillary TanglesObservational StudyObstructive Sleep ApneaOnset of illnessOutcomeParticipantPeriodicityPharmaceutical PreparationsPhenotypeProductionRNARiskRisk FactorsSamplingSenile PlaquesSleepSleep DisordersSleep disturbancesSleeplessnessSynapsesTestingTimeUnited StatesVariantamyloid formationanalytical methodbasebiobankcausal variantcohortdesigndisorder riskeffective therapyepidemiology studygenetic associationgenetic variantgenome wide association studygenome-widegenomic dataimprovedinnovationinstrumentmachine learning algorithmmachine learning methodmodifiable riskpreventprotective factorsstatisticssymptomatic improvementtau Proteinstraittranscriptometranscriptomics
项目摘要
PROJECT SUMMARY
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the United States and there are
no effective treatments or cure. The detection of modifiable protective or risk factors can improve the possibility
of intervention through life-style habits focused to reduce the disease risk or elevate disease protection. Sleep
disorders and disturbances have recently been recognized as risk factors for AD according to evidence from
epidemiological studies as well as associations with specific AD neuropathological hallmarks such as plaques
and tangles in the brain. However, the causal relationship between sleep disorders and disturbances and AD
has not been well established.
In this secondary data analysis proposal, we aim to study the causal effects of sleep traits on AD using
large publicly available genomics datasets including the UK Biobank (UKB), the AD Genetic Consortium
(ADGC), and others. We will use a bioinformatics workflow consisting of innovative analytical methods
designed to shed light on the causal relationship and identify specific genomics factors involved. The project
will be carried out as follows:
1) We will leverage large-scale genome-wide association studies (GWAS) conducted on sleep traits to
prioritize genes using a method (transcriptome-wide association study - TWAS) capable of detecting
phenotype-associated genes under genetic control and simultaneously related to changes in gene
expression. Then, AD RNA profiling studies will be analyzed using pseudotime algorithms, extracting latent
temporal information and ordering the samples according to disease progression. Genes identified in this
step (showing a high correlation with the disease progression and previously detected in the TWAS) will be
further investigated by Mendelian randomization to assess the causal relationship between sleep traits
(exposure) and AD (outcome).
2) A second independent analysis will be conducted by Mendelian randomization, prioritizing variants by
statistical significance from the large scale GWAS conducted on sleep traits and assessing the causal
relationship with AD. Additionally, a recently developed algorithm (latent causal variable method) will be
applied as well to detect causal relationships between sleep traits and AD.
This analytical workflow and the large size of the cohorts included will provide us with the statistical power to
identify modifiable risk and protective factors to demonstrate a causal relationship with AD.
项目摘要
阿尔茨海默氏病(AD)是美国最普遍的神经退行性疾病
没有有效的治疗或治愈。检测可修改的保护或风险因素可以改善可能性
通过生活方式的习惯进行干预,以降低疾病风险或提高疾病保护。睡觉
根据来自
流行病学研究以及与特定AD神经病理学标志(如斑块)的关联
和大脑缠结。但是,睡眠障碍与干扰与广告之间的因果关系
尚未确定。
在此二次数据分析建议中,我们旨在研究睡眠特征对AD的因果影响
大型公共基因组学数据集,包括英国生物库(UKB),AD遗传财团
(ADGC)等。我们将使用由创新分析方法组成的生物信息学工作流程
旨在阐明因果关系并确定涉及的特定基因组因素。项目
将进行如下:
1)我们将利用对睡眠特征进行的大规模基因组关联研究(GWAS)
使用一种能够检测的方法(TWAS)优先考虑基因(TWAS)
在遗传控制下与表型相关的基因,并与基因的变化同时相关
表达。然后,将使用假频率算法分析AD RNA分析研究,从而提取潜在
时间信息并根据疾病进展订购样品。在此确定的基因
步骤(显示与疾病进展的高相关性,并在TWA中检测到)
通过孟德尔随机化进一步研究以评估睡眠特征之间的因果关系
(暴露)和AD(结果)。
2)第二次独立分析将通过孟德尔随机化进行,将变体优先考虑
在睡眠特征上进行的大规模GWA的统计显着性并评估因果关系
与AD的关系。此外,最近开发的算法(潜在因果变量法)将是
也用于检测睡眠特征与AD之间的因果关系。
这种分析工作流程和包括的同类人群的大尺寸将为我们提供统计能力
确定可修改的风险和保护因素,以证明与AD的因果关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ignazio Stefano Piras其他文献
Y-chromosome 10 locus short tandem repeat haplotypes in a population sample from Sicily Italy.
意大利西西里岛人口样本中 Y 染色体 10 位点短串联重复单倍型。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:1.5
- 作者:
Maria Elena Ghiani;Ignazio Stefano Piras;R. John Mitchell;G. Vona - 通讯作者:
G. Vona
Population genetic data on four STR loci, PAI (CA)<sub><em>n</em></sub>, GpIIIa (CT)<sub><em>n</em></sub>, PLAT (TG)<sub>14</sub> (CA)<sub>12</sub>, and NOS2A (CCTTT)<sub><em>n</em></sub>, in Mediterranean populations
- DOI:
10.1016/j.legalmed.2007.01.001 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:
- 作者:
Alessandra Falchi;Ignazio Stefano Piras;Laurianne Giovannoni;Pedro Moral;Giuseppe Vona;Laurent Varesi - 通讯作者:
Laurent Varesi
Ignazio Stefano Piras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ignazio Stefano Piras', 18)}}的其他基金
Identification of novel blood-based biomarkers of Alzheimer's Disease by pseudotime analysis
通过伪时间分析鉴定阿尔茨海默病的新型血液生物标志物
- 批准号:
10431743 - 财政年份:2022
- 资助金额:
$ 19.2万 - 项目类别:
Transcriptomic assessment of pathology in PD with dementia and dementia with Lewy Bodies using iPSC neurons and brain tissue of the same individuals
使用同一个体的 iPSC 神经元和脑组织对帕金森病痴呆和路易体痴呆进行病理学转录组评估
- 批准号:
10511261 - 财政年份:2022
- 资助金额:
$ 19.2万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
MiRNA-based Therapeutics for SARS-CoV-2 S1 mediated neuroinflammation and beta-amyloid production
基于 miRNA 的 SARS-CoV-2 S1 介导的神经炎症和 β-淀粉样蛋白产生疗法
- 批准号:
10612483 - 财政年份:2022
- 资助金额:
$ 19.2万 - 项目类别:
MiRNA-based Therapeutics for SARS-CoV-2 S1 mediated neuroinflammation and beta-amyloid production
基于 miRNA 的 SARS-CoV-2 S1 介导的神经炎症和 β-淀粉样蛋白产生疗法
- 批准号:
10433303 - 财政年份:2022
- 资助金额:
$ 19.2万 - 项目类别:
Lifestyle Risk and Resiliency Factors and Alzheimer’s Disease in Down syndrome
唐氏综合症中的生活方式风险和弹性因素以及阿尔茨海默病
- 批准号:
10669953 - 财政年份:2020
- 资助金额:
$ 19.2万 - 项目类别:
The A3 Study: Ante-Amyloid Prevention of Alzheimer's disease
A3 研究:抗淀粉样蛋白预防阿尔茨海默病
- 批准号:
10650994 - 财政年份:2016
- 资助金额:
$ 19.2万 - 项目类别:
The A3 Study: Ante-Amyloid Prevention of Alzheimer's disease
A3 研究:抗淀粉样蛋白预防阿尔茨海默病
- 批准号:
9934968 - 财政年份:2016
- 资助金额:
$ 19.2万 - 项目类别: