Defining the conformational control of nitric oxide synthases by a multipronged approach

通过多管齐下的方法定义一氧化氮合酶的构象控制

基本信息

项目摘要

Project Summary The neuronal & endothelial nitric oxide (NO) synthase (nNOS & eNOS) enzymes make NO in response to calmodulin (CaM) binding, and function broadly in human health and disease. Posttranslational regulation through phosphorylation further regulates NOS in vivo in response to stimuli. Hallmarks of these large flavo- hemoproteins include multi-domain architecture with flexible linkers, allowing for dynamic, regulated interdomain electron transfer (IET). NO synthesis requires a large conformational change, in which the FMN domain shuttles between NOS's electron-accepting “input state” and electron-donating “output state” to deliver electrons across the domains. These large-scale motions are shaped by conformational energy landscape, i.e., the dependence of free energy on protein conformation. Moreover, local conformational adjustment likely continues in the docked state. Despite extensive research efforts, the dynamics underlying these conformational changes required for IET across the NOS domains remain unclear. A roadblock to answering this central question is the lack of a unified theoretical/computational approach to interpret the experimental results quantitatively. Solving this vexing research problem calls for a convergence of mesoscopic computational analysis and hands-on experiments that are sensitive to NOS protein dynamics in solution. Combining these latest experimental methods in a multipronged effort is innovative, as it dramatically expands the overall scope of the experimental measurements and provides a better basis for the computations. This approach will allow us to interpret the diverse experimental results and apply them to the calculated NOS conformational behavior paradigm in a consistent manner. Our integrated program draws on the unique combined expertise of the collaborative team. Importantly, we have made the crucial first step of implementing our experimental and computational approaches synergistically. To determine the energy landscape and the resulting NOS conformational properties, we will first calculate the conformational statistics and dynamics and use it in synergy with the suitable experiments to study long-range tethered domain motions in various NOS proteins. Furthermore, we will investigate local conformational adjustments in the docked state. We will then apply our integrated approach to study remodeling of the conformational landscape by functionally important phosphorylation. Taken together, these results will provide a comprehensive quantitative understanding of protein dynamics as a central part of NOS mechanisms. The proposed research is significant as it will answer long-standing fundamental questions about the NOS isoforms by defining the conformational aspects (statistics, dynamics, and energy landscape) that govern the obligatory electron transfer steps in NOS. This work will positively impact our understanding of other biomolecules as defining structure-dynamics-function relationship lies at the heart of current biochemical research.
项目摘要 神经元和内皮一氧化氮(NO)合酶(NNOS和ENOS)酶不适合对 钙调蛋白(CAM)结合,并在人类健康和疾病中广泛发挥作用。翻译后调节 通过磷酸化,进一步调节了对刺激的体内NOS。这些大的Flavo-的标志 血蛋白包括具有柔性接头的多域结构,允许动态,调节 域间电子传输(IET)。没有合成需要大的构象变化,其中FMN NOS的电子感受的“输入状态”和持光的“输出状态”之间的域名 跨域的电子设备。这些大规模运动是由构象能景观形成的,即 自由能对蛋白质构象的依赖性。此外,本地构象调整可能 在停靠的状态下继续。尽管进行了广泛的研究工作,但这些动态是这些的动态 IET跨NOS域所需的构象变化尚不清楚。回答的障碍 这个中心问题是缺乏解释实验的统一理论/计算方法 定量结果。解决这个烦恼的研究问题需要介绍介绍 对溶液中NOS蛋白动力学敏感的计算分析和动手实验。 将这些最新的实验方法结合在多重工作中是创新的,因为它大幅扩展 实验测量的总体范围,为计算提供了更好的基础。这 方法将使我们能够解释不同的实验结果并将其应用于计算的NOS 以一致的方式构象行为范式。我们的集成程序借鉴了独特的 合作团队的联合专业知识。重要的是,我们是实施的关键第一步 我们的实验和计算方法是协同的。 为了确定能量格局和所得的NOS构象性能,我们将首先计算 构象统计和动力学,并与合适的实验协同使用它来研究远程 各种NOS蛋白中的束缚结构域运动。此外,我们将研究当地构象 对接状态的调整。然后,我们将采用综合方法来研究重塑 通过功能重要的磷酸化构象局势。综上所述,这些结果将提供 对蛋白质动力学的全面定量理解是NOS机制的核心部分。 拟议的研究很重要,因为它将回答有关NOS同工型的长期基本问题 通过定义管理强制性的构象方面(统计,动态和能源格局) 电子传输步骤中的NOS。这项工作将对我们对其他生物分子的理解产生积极影响 定义结构 - 动力学功能关系是当前生化研究的核心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Changjian Feng的其他基金

RapifleX MALDI-TOF/TOF Mass Spectrometer
RapifleX MALDI-TOF/TOF 质谱仪
  • 批准号:
    10630621
    10630621
  • 财政年份:
    2023
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
BioAnalytical Chemistry Core
生物分析化学核心
  • 批准号:
    10393300
    10393300
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
BioAnalytical Chemistry Core
生物分析化学核心
  • 批准号:
    10689683
    10689683
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Defining the conformational control of nitric oxide synthases by a multipronged approach
通过多管齐下的方法定义一氧化氮合酶的构象控制
  • 批准号:
    10218215
    10218215
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Defining the conformational control of nitric oxide synthases by a multipronged approach
通过多管齐下的方法定义一氧化氮合酶的构象控制
  • 批准号:
    10571224
    10571224
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Defining the conformational control of nitric oxide synthases by a multipronged approach
通过多管齐下的方法定义一氧化氮合酶的构象控制
  • 批准号:
    10621327
    10621327
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Integrative Molecular Analysis Core
综合分子分析核心
  • 批准号:
    10408029
    10408029
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Integrative Molecular Analysis Core
综合分子分析核心
  • 批准号:
    10629344
    10629344
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Integrative Molecular Analysis Core
综合分子分析核心
  • 批准号:
    10202649
    10202649
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Defining the conformational control of nitric oxide synthases by a multipronged approach
通过多管齐下的方法定义一氧化氮合酶的构象控制
  • 批准号:
    10385652
    10385652
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:

相似国自然基金

保肾通络方多靶点调控HIF-1a介导巨噬细胞代谢重编程改善糖尿病肾脏疾病足细胞损伤机制研究
  • 批准号:
    82374366
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于妊娠期代谢异常的女性产后心血管疾病管理模式构建及实证研究
  • 批准号:
    72374227
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
新生期多胺代谢紊乱参与ARDS疾病发生发展的机制研究
  • 批准号:
    82301963
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂代谢异常通过瘦素调控MDSCs亚群分化在晚发型视神经脊髓炎谱系疾病发病机制中的作用
  • 批准号:
    82371356
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
肝脏遗传代谢性疾病来源增殖肝细胞类器官库的建立与应用
  • 批准号:
    32370793
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
  • 批准号:
    10704673
    10704673
  • 财政年份:
    2023
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
A novel therapeutic approach for Alzheimer Disease (AD)
阿尔茨海默病(AD)的新治疗方法
  • 批准号:
    10740016
    10740016
  • 财政年份:
    2023
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Cerebrovascular endothelial cilia in the pathogenesis and therapy of Alzheimer's disease
脑血管内皮纤毛在阿尔茨海默病发病机制和治疗中的作用
  • 批准号:
    10575082
    10575082
  • 财政年份:
    2023
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别:
Mechanisms of Kallikrein 6 in Myelin Plasticity, Motor Learning, and Fear Memory
激肽释放酶 6 在髓鞘可塑性、运动学习和恐惧记忆中的机制
  • 批准号:
    10677390
    10677390
  • 财政年份:
    2023
  • 资助金额:
    $ 31.42万
    $ 31.42万
  • 项目类别: