Analysis Tools for Fiber Diffraction of Muscle
肌肉纤维衍射分析工具
基本信息
- 批准号:10344800
- 负责人:
- 金额:$ 39.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAnimal ModelAreaArtificial IntelligenceBiophysicsBiopsyCancer Grant Supplements (P30)CardiomyopathiesCodeCommunitiesComputer SimulationComputer softwareContractsDataData AnalysesData SetDevelopmentDiffuseDiseaseDocumentationFiberFundingFutureGenerationsGoalsGrantHeart DiseasesHumanInheritedLaboratoriesMethodologyMethodsMicrofilamentsModelingMolecularMuscleMuscle FibersMuscle functionMutationMyopathyMyosin ATPaseNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institute of General Medical SciencesPatternPerformancePersonsPhenotypePhotonsPhysiologicalPositioning AttributeProceduresProductionProductivityPropertyPublishingRegulationReproducibilityResolutionResourcesRoentgen RaysSarcomeresSkeletal MuscleSourceStriated MusclesStructureSynchrotronsTechniquesTechnologyTestingThick FilamentThin FilamentTimeTrainingValidationWorkX ray diffraction analysisbasebeamlinecomputerized toolsconnectincrystallinitydata reductiondata toolsdeep learningdetectorelectron densityexperimental studyimprovedmillisecondmuscular structuremuscular systemmyosin-binding protein Cnebulinnovelnovel strategiespre-clinicalpredictive toolsprogramssimulationsoftware developmenttooltwo-dimensionaluser-friendly
项目摘要
Synchrotron small angle X-ray fiber diffraction is the method of choice for obtaining structural and physiological
information in the same experiment from active muscle. Experimental questions addressed range from basic
biophysical questions regarding mechanisms of force production and regulation to increasingly pre-clinical
questions relating structure to functional phenotype in animal models for cardiomyopathies and skeletal muscle
disease as well as human muscle biopsies. Critical barriers to progress, however, has been the lack of robust,
user-friendly tools for data reduction and computational tools for modeling diffraction patterns that can be used
as an aid to interpret the data. In Aim 1 we propose to further develop the MuscleX software package as a
highly automated data-reduction suite for small-angle fiber diffraction patterns from striated muscle. We will
use artificial intelligence (AI) approaches to greatly increase efficiency, reduce influence of operator bias and
improve reproducibility. New functionality will include global diffuse background subtraction using “deep
learning”, the ability to analyze multiple superimposed diffraction patterns, autoindexing and automatic
integration of diffraction peaks and unsampled layer lines. Robustness and reproducibility of code will be
improved with rigorous testing and validation procedures. In Aim 2 we propose to develop a new tool,
MUSICO-X for predicting two-dimensional X-ray diffraction patterns from striated muscle. MUSICO-X will be a
new extension module for the multi-scale simulation package MUSICO that predicts small-angle X-ray fiber
diffraction patterns simultaneously with the physiological data as a novel “forward problem” approach to
extracting maximal information from static and dynamic time resolved X-ray fiber diffraction experiments on
striated muscle. This new module will assign electron densities to components of the sarcomere using
predicted molecular positions from MUSICO to predict simulated diffraction patterns that are tested and refined
against representative X-ray diffraction and physiological data sets. These proposed software developments
are broadly applicable to all muscle systems without a specific disease focus, and would not be fundable
through usual mechanisms at NIAMS or HLBI. The availability of robust, user friendly data reduction code will
increase the efficiency and reproducibility data from muscle fiber diffraction experiments on muscle. The
proposed new simulation tool, encompassing both the structure and function of muscle, will provide a potent
hypothesis generation and testing tool that can greatly increase the value of past, present, and future X-ray
diffraction experiments on muscle.
同步加速器小角度 X 射线纤维衍射是获得结构和生理学信息的首选方法
来自活跃肌肉的同一实验中的信息涉及到基本的实验问题。
关于力量产生和调节机制的生物物理学问题越来越多地出现在临床前
心肌病和骨骼肌动物模型中结构与功能表型的相关问题
然而,进展的关键障碍是缺乏强有力的、
用户友好的数据缩减工具和可用于建模衍射图案的计算工具
作为解释数据的辅助手段,在目标 1 中,我们建议进一步开发 MuscleX 软件包作为
我们将为横纹肌的小角度纤维衍射图案提供高度自动化的数据缩减套件。
使用人工智能(AI)方法大大提高效率,减少操作员偏见的影响
新功能将包括使用“深度”进行全局漫反射背景扣除。
学习”,能够分析多个叠加的衍射图案、自动索引和自动
衍射峰和未采样层线的集成将提高代码的鲁棒性和再现性。
通过严格的测试和验证程序进行改进 在目标 2 中,我们建议开发一种新工具,
用于预测横纹肌二维 X 射线衍射图案的 MUSICO-X 将是一个。
用于预测小角度 X 射线光纤的多尺度仿真包 MUSICO 的新扩展模块
衍射图案与生理数据同时作为一种新颖的“正向问题”方法
从静态和动态时间分辨 X 射线光纤衍射实验中提取最大信息
这个新模块将使用肌节的组成部分分配电子密度。
从 MUSICO 预测分子位置,以预测经过测试和改进的模拟衍射图案
针对代表性的 X 射线衍射和生理数据集。
广泛适用于没有特定疾病重点的所有肌肉系统,并且无法获得资助
通过 NIAMS 或 HLBI 的常用机制,将提供强大的、用户友好的数据缩减代码。
提高肌肉肌纤维衍射实验数据的效率和可重复性。
提出的新模拟工具,涵盖肌肉的结构和功能,将提供有效的
假设生成和测试工具,可以大大提高过去、现在和未来 X 射线的价值
肌肉衍射实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS C IRVING其他文献
THOMAS C IRVING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS C IRVING', 18)}}的其他基金
An upgraded experimental hutch vacuum system for improved safety and operations for the BioCAT Facility at the Advanced Photon Source
升级后的实验室真空系统可提高先进光子源 BioCAT 设施的安全性和操作性
- 批准号:
10799262 - 财政年份:2021
- 资助金额:
$ 39.56万 - 项目类别:
The Biophysics Collaborative Access Team (Admin - Core)
生物物理学协作访问团队(管理 - 核心)
- 批准号:
10032572 - 财政年份:2021
- 资助金额:
$ 39.56万 - 项目类别:
The Biophysics Collaborative Access Team (User Training and Outreach)
生物物理学协作访问团队(用户培训和外展)
- 批准号:
10032573 - 财政年份:2021
- 资助金额:
$ 39.56万 - 项目类别:
The Biophysics Collaborative Access Team Fiber Diffraction Core)
生物物理学协作访问团队光纤衍射核心)
- 批准号:
10032574 - 财政年份:2021
- 资助金额:
$ 39.56万 - 项目类别:
Equipment items to enhance operations at the BioCAT Facility at the Advanced Photon Source
用于增强先进光子源 BioCAT 设施运营的设备项目
- 批准号:
10899388 - 财政年份:2021
- 资助金额:
$ 39.56万 - 项目类别:
The Biophysics Collaborative Access Team Fiber Diffraction Core)
生物物理学协作访问团队光纤衍射核心)
- 批准号:
10561677 - 财政年份:2021
- 资助金额:
$ 39.56万 - 项目类别:
The Biophysics Collaborative Access Team (Admin - Core)
生物物理学协作访问团队(管理 - 核心)
- 批准号:
10561674 - 财政年份:2021
- 资助金额:
$ 39.56万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 39.56万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 39.56万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 39.56万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 39.56万 - 项目类别:
Single viewpoint panoramic imaging technology for colonoscopy
肠镜单视点全景成像技术
- 批准号:
10580165 - 财政年份:2023
- 资助金额:
$ 39.56万 - 项目类别: