Deciphering the Daam2-VHL signaling axis in oligodendrocyte development and white matter injury
破译少突胶质细胞发育和白质损伤中的 Daam2-VHL 信号轴
基本信息
- 批准号:10338107
- 负责人:
- 金额:$ 34.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiochemicalCell Differentiation processCell LineageCellsComplexCouplingDataDefectDegradation PathwayDemyelinationsDevelopmentDevelopmental GeneDiseaseEctopic ExpressionEventExhibitsGene Expression ProfilingGenerationsGenesGeneticGenetic EpistasisGoalsHumanHypoxiaHypoxia PathwayHypoxic Brain DamageInjuryLigaseLightMediatingModelingMorphogenesisMusMyelinNerve DegenerationNervous System PhysiologyNeuraxisNeurogliaNeuronal DysfunctionNeuronsOligodendrogliaPathway interactionsPatternPlayProteinsRegenerative capacityRoleSignal TransductionSystemTRIM MotifTestingUbiquitinUbiquitinationWNT Signaling Pathwaybaseclinically actionableclinically significantemerging adultglial cell developmenthypoxia neonatorumloss of functionmouse modelmyelinationnerve stem cellnervous system disorderneural circuitnoveloligodendrocyte myelinationoligodendrocyte progenitorprogramsprotein degradationreceptorremyelinationrepairedscreeningtherapeutic developmenttreatment strategyubiquitin-protein ligasewhite matterwhite matter damagewhite matter injury
项目摘要
SUMMARY and ABSTRACT
Glia comprise approximately 60% of the cellular constituency of central nervous system (CNS), playing diverse
roles in the functioning CNS and a host of neurological disorders. Development of glial cell lineages proceeds
along a tightly regulated program that involves patterning, generation of diverse cells, differentiation, and
myelination. This cascade of developmental events is particularly vulnerable to neonatal hypoxic brain injury,
which leads to profound loss of myelinating oligodendrocytes (OLs), extensive white matter damage,
culminating in neuronal dysfunction. Despite the robust regenerative capacity of OLs, the underlying
mechanisms mediating hypomyelination and the subsequent defects in neural circuits after hypoxic injury
remain poorly defined. Moreover, myelination continues throughout early adulthood, which also renders the
CNS susceptible to insults causing late-onset neurodegeneration. Therefore, the overarching goal of this
application is to define new genes and pathways that drive OL maturation during development and repair, and
pinpoint potential targetable pathways for white matter disorders. Previously, we identified Daam2
(Disheveled associated activator of morphogenesis 2) as a pivotal regulator of OL myelination and repair, and
recently discovered that Daam2 governs OL differentiation through ubiquitination of the hypoxia regulator
VHL (von Hippel-Lindau). Moreover, we discovered that Daam2 is regulated by two E3 ligases, Nedd4 (Neural
precursor cell expressed developmentally down-regulated protein 4) and Trim9 (Tripartite Motif Containing
9), which in turn govern VHL ubiquitination and OL differentiation. These observations raise two key
questions that we will pursue in this proposal: 1) how does Daam2 modulate VHL-HIF signaling in OLs? and 2)
how is the ubiquitin-mediated Daam2 degradation controlled in OLs? By understanding the in-depth
mechanisms by which Daam2 operates, we will establish Daam2 inhibition as a clinically significant and
actionable strategy for the treatment of white matter injury. To answer these key questions, we will first define
the reciprocal relationship between Daam2 and VHL during OL development and white matter injury (Aim 1).
These studies will define the Daam2-VHL axis as a pivotal regulator of OL development, while revealing novel
connections between Wnt signaling and hypoxic pathway during OL myelination. Next, we will determine
Daam2 proteasomal degradation pathways in OLs (Aim 2). Upon completion, these studies will define how
Daam2 is regulated by target E3 ligases, and identify Nedd4 and Trim9 as novel regulators of OL myelination.
A mechanistic understanding of Daam2-VHL axis function in oligodendrocyte repair after injury will shed light
on cellular vulnerability to white matter injury and ultimately point to new venues for therapeutic development
to stimulate OL remyelination.
总结和摘要
神经胶质细胞约占中枢神经系统 (CNS) 细胞成分的 60%,发挥着多种作用
在中枢神经系统功能和许多神经系统疾病中发挥作用。神经胶质细胞谱系的发展取得进展
沿着严格调控的程序,涉及图案化、不同细胞的生成、分化和
髓鞘形成。这种级联的发育事件特别容易受到新生儿缺氧性脑损伤的影响,
这会导致髓鞘少突胶质细胞(OL)的严重丧失、白质的广泛损伤,
最终导致神经元功能障碍。尽管 OL 具有强大的再生能力,但其潜在的
介导髓鞘形成低下以及缺氧损伤后神经回路缺陷的机制
仍然不明确。此外,髓鞘形成持续到成年早期,这也使得
中枢神经系统容易受到损伤,导致迟发性神经变性。因此,本次活动的总体目标是
应用程序是为了定义在发育和修复过程中驱动 OL 成熟的新基因和途径,以及
查明白质疾病的潜在目标途径。之前,我们确定了 Daam2
(形态发生的蓬乱相关激活剂 2)作为 OL 髓鞘形成和修复的关键调节剂,以及
最近发现 Daam2 通过缺氧调节因子的泛素化来控制 OL 分化
VHL(冯·希佩尔-林道)。此外,我们发现 Daam2 受两个 E3 连接酶 Nedd4(Neural
前体细胞表达发育下调蛋白 4) 和 Trim9(含有三部分基序)
9),进而控制 VHL 泛素化和 OL 分化。这些观察提出了两个关键
我们将在本提案中探讨的问题:1)Daam2 如何调节 OL 中的 VHL-HIF 信号传导?和 2)
OL 中泛素介导的 Daam2 降解是如何控制的?通过深入了解
Daam2 的运作机制,我们将把 Daam2 抑制建立为具有临床意义和
治疗白质损伤的可行策略。为了回答这些关键问题,我们首先定义
Daam2 和 VHL 在 OL 发育和白质损伤过程中的相互关系(目标 1)。
这些研究将 Daam2-VHL 轴定义为 OL 发育的关键调节因子,同时揭示新的
OL 髓鞘形成过程中 Wnt 信号传导与缺氧途径之间的联系。接下来,我们将确定
OL 中的 Daam2 蛋白酶体降解途径(目标 2)。完成后,这些研究将定义如何
Daam2 受目标 E3 连接酶调节,并将 Nedd4 和 Trim9 确定为 OL 髓鞘形成的新型调节剂。
对损伤后少突胶质细胞修复中 Daam2-VHL 轴功能的机制理解将有助于阐明
研究细胞对白质损伤的脆弱性,并最终指出治疗开发的新途径
刺激 OL 髓鞘再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyun Kyoung Lee其他文献
Hyun Kyoung Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyun Kyoung Lee', 18)}}的其他基金
Deciphering Mechanisms of Astrocyte-BBB Interaction in Normal and Ischemic Stroke
解读正常和缺血性中风中星形胶质细胞-BBB相互作用的机制
- 批准号:
10585849 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Deciphering the Daam2-VHL signaling axis in oligodendrocyte development and white matter injury
破译少突胶质细胞发育和白质损伤中的 Daam2-VHL 信号轴
- 批准号:
10556388 - 财政年份:2019
- 资助金额:
$ 34.67万 - 项目类别:
相似国自然基金
冻融循环介导葡萄糖苷酶与热解碳界面分子机制和生化活性研究
- 批准号:42307391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向生化物质检测的太赫兹手性光谱与传感技术研究
- 批准号:62335012
- 批准年份:2023
- 资助金额:240 万元
- 项目类别:重点项目
Tet(X)祖先蛋白的进化机制及生化功能研究
- 批准号:32302927
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于邻接矩阵内生化的我国银行业韧性研究:评估、预警与监管
- 批准号:72373053
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
SPION与BMP-2磁生化信号耦合靶向新生骨精准改善成骨微环境的研究
- 批准号:
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:
相似海外基金
Molecular mechanisms mediating the soft tissue attachment to teeth
介导软组织附着到牙齿的分子机制
- 批准号:
10838302 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Identifying epigenetic factors in control of epidermal stem cell longevity in the adult skin
识别控制成人皮肤表皮干细胞寿命的表观遗传因素
- 批准号:
10723212 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
ShEEP Request for the purchase of a research- grade Cell Imaging Multi-mode Reader
ShEEP 请求购买研究级细胞成像多模式读取器
- 批准号:
10739194 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Toward therapeutic targeting of liquid-liquid phase separation dynamics in skin
皮肤液-液相分离动力学的治疗靶向
- 批准号:
10679610 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别: