Deciphering the Daam2-VHL signaling axis in oligodendrocyte development and white matter injury
破译少突胶质细胞发育和白质损伤中的 Daam2-VHL 信号轴
基本信息
- 批准号:10556388
- 负责人:
- 金额:$ 34.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:BiochemicalCell LineageCellsCentral Nervous SystemComplexCouplingDataDefectDegradation PathwayDemyelinationsDevelopmentDevelopmental GeneDiseaseEctopic ExpressionEventExhibitsGene Expression ProfilingGenerationsGenesGeneticGenetic EpistasisGoalsHumanHypoxiaHypoxia PathwayHypoxic Brain DamageInjuryLigaseMediatingModelingMorphogenesisMusMyelinNerve DegenerationNervous System PhysiologyNeurogliaNeuronal DysfunctionNeuronsOligodendrogliaPathway interactionsPatternPlayPredispositionProteinsRegenerative capacityRoleSignal TransductionSystemTRIM MotifTestingUbiquitinUbiquitinationWNT Signaling Pathwayclinically actionableclinically significantemerging adultgain of functionglial cell developmenthypoxia neonatorumloss of functionmouse modelmyelinationnerve stem cellnervous system disorderneural circuitnoveloligodendrocyte myelinationoligodendrocyte progenitorprogramsprotein degradationreceptorremyelinationrepairedscreeningtherapeutic developmenttreatment strategyubiquitin-protein ligasewhite matterwhite matter damagewhite matter injury
项目摘要
SUMMARY and ABSTRACT
Glia comprise approximately 60% of the cellular constituency of central nervous system (CNS), playing diverse
roles in the functioning CNS and a host of neurological disorders. Development of glial cell lineages proceeds
along a tightly regulated program that involves patterning, generation of diverse cells, differentiation, and
myelination. This cascade of developmental events is particularly vulnerable to neonatal hypoxic brain injury,
which leads to profound loss of myelinating oligodendrocytes (OLs), extensive white matter damage,
culminating in neuronal dysfunction. Despite the robust regenerative capacity of OLs, the underlying
mechanisms mediating hypomyelination and the subsequent defects in neural circuits after hypoxic injury
remain poorly defined. Moreover, myelination continues throughout early adulthood, which also renders the
CNS susceptible to insults causing late-onset neurodegeneration. Therefore, the overarching goal of this
application is to define new genes and pathways that drive OL maturation during development and repair, and
pinpoint potential targetable pathways for white matter disorders. Previously, we identified Daam2
(Disheveled associated activator of morphogenesis 2) as a pivotal regulator of OL myelination and repair, and
recently discovered that Daam2 governs OL differentiation through ubiquitination of the hypoxia regulator
VHL (von Hippel-Lindau). Moreover, we discovered that Daam2 is regulated by two E3 ligases, Nedd4 (Neural
precursor cell expressed developmentally down-regulated protein 4) and Trim9 (Tripartite Motif Containing
9), which in turn govern VHL ubiquitination and OL differentiation. These observations raise two key
questions that we will pursue in this proposal: 1) how does Daam2 modulate VHL-HIF signaling in OLs? and 2)
how is the ubiquitin-mediated Daam2 degradation controlled in OLs? By understanding the in-depth
mechanisms by which Daam2 operates, we will establish Daam2 inhibition as a clinically significant and
actionable strategy for the treatment of white matter injury. To answer these key questions, we will first define
the reciprocal relationship between Daam2 and VHL during OL development and white matter injury (Aim 1).
These studies will define the Daam2-VHL axis as a pivotal regulator of OL development, while revealing novel
connections between Wnt signaling and hypoxic pathway during OL myelination. Next, we will determine
Daam2 proteasomal degradation pathways in OLs (Aim 2). Upon completion, these studies will define how
Daam2 is regulated by target E3 ligases, and identify Nedd4 and Trim9 as novel regulators of OL myelination.
A mechanistic understanding of Daam2-VHL axis function in oligodendrocyte repair after injury will shed light
on cellular vulnerability to white matter injury and ultimately point to new venues for therapeutic development
to stimulate OL remyelination.
摘要和摘要
GLIA约占中枢神经系统(CNS)细胞选区的60%,玩耍多样
在功能性中枢神经系统和许多神经系统疾病中的作用。神经胶质细胞谱系的发展进行
沿着涉及图案,生成不同细胞的严格调节程序,分化和
髓鞘。一系列发育事件尤其容易受到新生儿低氧脑损伤的影响,
导致髓鞘少突胶质细胞(OLS)严重丧失,广泛的白质损害,
最终导致神经元功能障碍。尽管OLS具有强大的再生能力
低氧损伤后神经回路中介导降压效组的机制和随后的缺陷
保持较差。此外,整个成年早期的髓鞘形成还在继续,这也使
中枢神经系统易受侮辱,导致晚发神经退行性。因此,这是总体目标
应用是定义新的基因和途径,这些基因和途径在开发和维修过程中推动OL成熟,以及
查明对白质疾病的潜在目标途径。以前,我们确定了DAAM2
(变形的形态发生2)作为OL髓鞘化和修复的关键调节剂,以及
最近发现,DAAM2通过泛素化调节剂来控制OL的分化
VHL(von Hippel-Lindau)。此外,我们发现DAAM2受两个E3连接酶(NEDD4)(神经)调节
前体细胞表达了发育下调的蛋白质4)和trim9(包含三方基序
9),这又控制VHL泛素化和差异化。这些观察结果提出了两个关键
我们将在此提案中提出的问题:1)DAAM2如何调节OLS中的VHL-HIF信号?和2)
泛素介导的DAAM2降解如何在OLS中控制?通过了解深入
DAAM2运行的机制,我们将建立DAAM2抑制作用是一种临床意义,并且
可行的白质损伤治疗策略。要回答这些关键问题,我们将首先定义
在OL发育和白质损伤期间,DaAM2和VHL之间的相互关系(AIM 1)。
这些研究将将DAAM2-VHL轴定义为OL发育的关键调节剂,同时揭示了新型
OL髓样期间Wnt信号传导与低氧途径之间的连接。接下来,我们将确定
OLS中的DAAM2蛋白酶体降解途径(AIM 2)。完成后,这些研究将定义
DAAM2受靶E3连接酶的调节,并将NEDD4和TRIM9识别为OL髓鞘化的新调节剂。
受伤后的少突胶质细胞修复中DAAM2-VHL轴功能的机械理解会散发
关于细胞对白质损伤的脆弱性,最终指向治疗性开发的新场所
刺激Ol rebremerination。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyun Kyoung Lee其他文献
Hyun Kyoung Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyun Kyoung Lee', 18)}}的其他基金
Deciphering Mechanisms of Astrocyte-BBB Interaction in Normal and Ischemic Stroke
解读正常和缺血性中风中星形胶质细胞-BBB相互作用的机制
- 批准号:
10585849 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Deciphering the Daam2-VHL signaling axis in oligodendrocyte development and white matter injury
破译少突胶质细胞发育和白质损伤中的 Daam2-VHL 信号轴
- 批准号:
10338107 - 财政年份:2019
- 资助金额:
$ 34.67万 - 项目类别:
相似国自然基金
谱系特异的转录因子-代谢重编程诱导缺血皮质Sox2+星形胶质细胞去分化
- 批准号:82371402
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
下丘脑Ascl1+前体细胞的谱系绘制与调控机制研究
- 批准号:32300804
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
窦房结细胞谱系来源及其互作在窦房结发育和功能中的作用和机制
- 批准号:32370889
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
小细胞肺癌脑、肾上腺等多器官转移的谱系可塑性机制与干预研究
- 批准号:82330087
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
人多能干细胞定向分化再生B谱系的研究
- 批准号:32300676
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Mechanisms Underlying the Development of Atherosclerosis
动脉粥样硬化发展的新机制
- 批准号:
10589484 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Simultaneous pharmacological profiling of oncogenic gene fusion proteins in cancer
癌症中致癌基因融合蛋白的同时药理学分析
- 批准号:
10845876 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
The role of serine metabolism on the evolution of oral squamous cell carcinoma
丝氨酸代谢在口腔鳞状细胞癌演变中的作用
- 批准号:
10825875 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Decoding global RNP topologies in splicing regulation
解码拼接调节中的全局 RNP 拓扑
- 批准号:
10636541 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别: