Protein Structural Dynamics in Living Cells
活细胞中的蛋白质结构动力学
基本信息
- 批准号:10712991
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcclimatizationAddressAlgorithmsBehaviorBiochemicalBiological AssayBiophysicsCell physiologyCellsDevelopmentDiseaseEnvironmentFailureHealthHumanIn VitroKnowledgeMetabolicMetabolismMethodsMolecularNatureOrganismPathologicPathologic ProcessesProcessPropertyProteinsRegulationResearchResolutionSpatial DistributionSpectrum AnalysisStressTechnologyTissue DifferentiationTissuesTranslatingVisualizationWorkimaging approachimprovedin vivoloss of functionmolecular dynamicsprotein aggregationprotein foldingprotein functionprotein structureproteostasistheories
项目摘要
Project Summary/Abstract
Our current understanding of in vitro protein folding is due to decades of experimental and computational
research that provided high-resolution characterization of protein structure, identification of folding principles,
and development of folding algorithms. However, proteins often participate in new and unexpected functional
and pathological behaviors in vivo. Because protein processes involve a large network of interactions that
strongly depend on the environment, understanding how proteins work inside cells requires knowledge of protein
structure, stability, and dynamics in vivo. While evidence that the cellular environment perturbs protein behaviors
emerged over half a century ago, we still have limited fundamental information about the effects of these
cooperative cellular interactions on protein properties. The gap in knowledge is largely attributable to the weak
transient nature of interactions in the cellular milieu and challenges associated with studying protein functions in
living cells. This limitation is concerning because proteins in cells and organisms are continuously interacting
with other biomolecules, which may disrupt the ability of a protein to fold and assemble properly and results in
loss of function and eventually disease. To address these gaps, our research group leverages groundbreaking
in vivo spectro-microscopy methods, in combination with functional biochemical assays, in vitro biophysical
spectroscopy, and numerical analysis solutions to characterize protein structural dynamics in living cells and
tissues. This platform will transform our ability to examine unexplored layers of protein complexity and regulation
in cells and tissues, specifically: (1) Do classic in vitro protein principles translate to cells? How accurate are the
in-cell predictions of folding theory and molecular dynamics simulations? (2) Can we develop methods to
visualize the spatial distribution of metabolism and associated metabolic protein structural dynamics in living
cells? (3) How does thermal adaptation and acclimation by organisms change the stability, folding, and
aggregation of proteins in differentiated tissues? Overall, this work will lead to a greater understanding of how
remodeling of the cell interior during development, environmental stress, and disease contributes to protein
homeostasis. Unraveling these interactions will improve our molecular-level understanding of essential
processes in human health and disease.
项目摘要/摘要
我们目前对体外蛋白质折叠的理解是由于数十年的实验和计算引起的
提供了蛋白质结构的高分辨率表征的研究,折叠原理的识别,
和折叠算法的开发。但是,蛋白质通常参与新的和意外的功能
体内病理行为。因为蛋白质过程涉及一个大的相互作用网络
强烈依赖于环境,了解细胞内蛋白质的工作方式需要了解蛋白质
体内结构,稳定性和动力学。虽然有证据表明细胞环境伴有蛋白质行为
半个多世纪以前出现了,我们仍然有关于这些影响的基本信息
关于蛋白质特性的合作细胞相互作用。知识的差距在很大程度上归因于弱者
相互作用在细胞环境中的瞬时性质以及与研究蛋白质功能相关的挑战
活细胞。由于细胞和生物中的蛋白质是连续相互作用的,因此这种限制是关于这种局限性的
使用其他生物分子,这可能会破坏蛋白质正确折叠和组装的能力,并导致
功能丧失和最终疾病。为了解决这些差距,我们的研究小组利用开创性
体内光谱微观显微镜法,结合功能性生化测定,体外生物物理
光谱和数值分析解决方案,以表征活细胞中蛋白质结构动力学和
组织。该平台将改变我们检查未开发的蛋白质复杂性和调节层的能力
在细胞和组织中,特别是:(1)经典的体外蛋白质原理会转化为细胞吗?有多准确
折叠理论和分子动力学模拟的细胞内预测? (2)我们可以开发方法
可视化新陈代谢和相关代谢蛋白结构动力学的空间分布
细胞? (3)生物体的热适应和适应性如何改变稳定性,折叠和
分化组织中蛋白质的聚集?总体而言,这项工作将使人们对
开发过程中细胞内部的重塑,环境应激和疾病有助于蛋白质
稳态。解开这些相互作用将改善我们对必需品的分子级别的理解
人类健康和疾病的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caitlin Davis其他文献
Caitlin Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantifying Bone and Skin Movement in the Residual Limb-Socket Interface of Individuals with Transtibial Amputation Using Dynamic Stereo X-Ray
使用动态立体 X 射线量化小腿截肢者残肢窝接口中的骨骼和皮肤运动
- 批准号:
10597108 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Mobile technologies for delivering hearing care through community health workers
通过社区卫生工作者提供听力保健的移动技术
- 批准号:
10686132 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Mobile technologies for delivering hearing care through community health workers
通过社区卫生工作者提供听力保健的移动技术
- 批准号:
10525540 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Improved analysis of cochlear implant sound processing
人工耳蜗声音处理的改进分析
- 批准号:
8197266 - 财政年份:2010
- 资助金额:
$ 41.88万 - 项目类别:
Improved analysis of cochlear implant sound processing
人工耳蜗声音处理的改进分析
- 批准号:
8582546 - 财政年份:2010
- 资助金额:
$ 41.88万 - 项目类别: