Atomic basis for chloride channel and transporter gating and selectivity
氯离子通道和转运蛋白门控和选择性的原子基础
基本信息
- 批准号:10319992
- 负责人:
- 金额:$ 32.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-10 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlbers-Schonberg diseaseAmidesAmino Acid MotifsAmino Acid SubstitutionAmino AcidsAnion Transport ProteinsAnionsArchitectureBacteriaBartter DiseaseBindingBinding SitesBiochemicalBioinformaticsBiologicalBone DiseasesBrainBypassCLC GeneCarrier ProteinsCationsCell membraneChloride ChannelsChloridesCouplingDataDent DiseaseDiseaseElectrophysiology (science)ElectrostaticsEpithelialEstersEventFamilyFormulationFoundationsFunctional disorderFutureGenesGenetic DiseasesGoalsHereditary DiseaseHomologous GeneHumanHuman GenomeImpairmentInterventionInvestigationIon ChannelIonsKidneyLysosomal Storage DiseasesMalignant - descriptorMeasurementMediatingMembraneModelingMolecularMolecular ConformationMovementMuscleMuscle ContractionMutagenesisMutationMyotonia CongenitaNeuronsOrganismOutcomePathway interactionsPharmacologyPhylogenetic AnalysisPhysiologicalPhysiological ProcessesPhysiologyPlantsPotassium ChannelProcessPropertyProteinsResolutionRoleRouteSideSodium ChlorideStructureTestingTherapeuticTimeTissuesVertebral columnX-Ray Crystallographyantiportbasecomputerized toolsdesigndisease-causing mutationexperimental studyflexibilityinnovationmolecular dynamicsnovelprotein functionrational designreconstructionsimulation
项目摘要
ABSTRACT
The CLC channels and transporters mediate anion transport through biological membranes. Genes encoding
for CLC proteins are found in nearly all organisms, from bacteria to plants and humans. Mutations altering the
properties of five of the nine human genes encoding for CLC homologues result in genetic disorders of bone,
kidney, brain and muscle, highlighting the fundamental role of these proteins in a wide variety of tissues and
cellular compartments. Despite their pathophysiological importance, our understanding of how these proteins
function lagged far behind many other classes of ion channels and exchangers. This limits our ability to
interpret their function in human physiology and to design targeted pharmacological interventions that would
selectively manipulate their activity. Thus, our long-term goal is to elucidate the atomic basis for CLC Cl-
channel and transporter function. Our proposal is articulated in three specific aims, each of which addresses a
fundamental unanswered mechanistic question on CLC function. Our innovative use of synergistic
experimental and computational approaches enables the formulation of specific hypotheses and their rigorous
testing. In the first Aim we will determine the bases of substrate selectivity in the CLC Cl- channels. While
selectivity of cation channels is well understood, nearly nothing is known on anion selectivity. We will probe the
role of the protein backbone in this process using atomic-scale mutagenesis and will determine the
consequences of these manipulations through structural, electrophysiological and computational experiments.
Our second aim is to elucidate the coupling mechanism in the CLC exchangers. The CLC transporters
exchange 2 Cl- for 1 H+ across biological membranes. Several disease-causing mutations affect this process
through unknown mechanisms. Our goal is to elucidate the basis for Cl-/H+ coupling in the CLCs. We will utilize
computational tools in conjunction to conventional and atomic mutagenesis to probe the dynamic
rearrangements undergone by the protein to enable the formation of a pathway for H+ that is physically distinct
from the route taken by the Cl- ions. The third aim is to determine the molecular origin of the functional
divergence of the CLC channels from the transporters. Despite the availability of high resolution structural
information for both subtypes, the molecular origin of this functional divergence remains unknown. We will use
statistical phylogenetics and evolutionary bioinformatics to identify the most likely evolutionary sequence of
events leading to the functional divergence. We will then functionally characterize sequences recapitulating
these key evolutionary steps and use this information to identify a subset of amino acid substitutions necessary
to enact the functional switch. Ultimately, these efforts will lead to new molecular and conceptual framework for
the understanding of CLC function, which will enable the design of approaches for the amelioration of the
disease conditions caused by the dysfunction of these proteins.
抽象的
CLC通道和转运蛋白通过生物膜介导阴离子的传输。基因编码
对于Clc蛋白,几乎在所有生物中都发现了从细菌到植物和人类。突变改变了
编码CLC同源物的九种人类基因中的五个特性导致骨骼遗传疾病,
肾脏,大脑和肌肉,强调了这些蛋白质在多种组织中的基本作用
细胞室。尽管具有病理生理的重要性,但我们对这些蛋白质的理解
功能远远落后于许多其他类别的离子通道和交换器。这限制了我们的能力
解释它们在人类生理学中的功能并设计针对的药理干预措施
有选择地操纵他们的活动。因此,我们的长期目标是阐明Clc cl-的原子基础
通道和转运蛋白功能。我们的建议在三个特定目标中阐明,每个目标都解决了
关于CLC功能的基本未解决的机械问题。我们对协同作用的创新使用
实验和计算方法可实现特定假设及其严格的表述
测试。在第一个目标中,我们将确定CLC CL-通道中底物选择性的碱基。尽管
阳离子通道的选择性已充分了解,几乎在阴离子的选择性上尚无任何人知道。我们将探究
蛋白质主链在此过程中使用原子尺度诱变的作用,并将确定
这些操作通过结构,电生理和计算实验的后果。
我们的第二个目标是阐明CLC交换器中的耦合机制。 CLC转运蛋白
在生物膜上交换2 cl-持续1 H+。几种引起疾病的突变影响了这一过程
通过未知的机制。我们的目标是阐明CLC中Cl-/H+耦合的基础。我们将利用
与常规和原子诱变结合使用的计算工具,以探测动态
蛋白质进行了重新排列,以使H+的途径形成物理上不同的途径
从cl的路线中。第三个目的是确定功能的分子起源
CLC通道与转运蛋白的差异。尽管有高分辨率的结构可用
这两种亚型的信息,该功能差异的分子起源仍然未知。我们将使用
统计系统发育和进化生物信息学,以识别最可能的进化序列
导致功能差异的事件。然后,我们将在功能上表征序列的序列
这些关键的进化步骤,并使用此信息来确定必要的氨基酸取代子集
制定功能开关。最终,这些努力将导致新的分子和概念框架
对CLC功能的理解,这将使方法设计用于改善
这些蛋白质功能障碍引起的疾病状况。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Not so transport incompetent after all: Revisiting a CLC-7 mutant sheds new mechanistic light on lysosomal physiology.
- DOI:10.1085/jgp.202012805
- 发表时间:2021-04-05
- 期刊:
- 影响因子:0
- 作者:Accardi A
- 通讯作者:Accardi A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessio Accardi其他文献
Alessio Accardi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessio Accardi', 18)}}的其他基金
Atomic basis for chloride channel and transporter gating and selectivity
氯离子通道和转运蛋白门控和选择性的原子基础
- 批准号:
10083219 - 财政年份:2019
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
8860199 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
10170367 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
10624809 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
10798983 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
9238783 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
8728513 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
10406928 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Structure and function of chloride channels and transporters
氯离子通道和转运蛋白的结构和功能
- 批准号:
7802969 - 财政年份:2009
- 资助金额:
$ 32.35万 - 项目类别:
相似国自然基金
非均匀退磁影响下城轨列车永磁无位置传感器牵引系统容错控制研究
- 批准号:52307068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于鸟喙特征的仿生割胶刀摩擦特性及其对割面质量影响机理研究
- 批准号:52305251
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轴流泵作透平角区分离涡演化对压力脉动的影响机理及控制策略
- 批准号:52309116
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
转录共激活因子MED1对银屑病微环境稳态的影响及其机制研究
- 批准号:82304025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混用模式下戊唑醇稻作环境行为归趋对枯草芽孢杆菌生物被膜形成的影响及机制
- 批准号:32372630
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 32.35万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 32.35万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 32.35万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 32.35万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 32.35万 - 项目类别:
Research Grant