Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound

生物气体纳米结构作为超声分子成像记者

基本信息

  • 批准号:
    10318929
  • 负责人:
  • 金额:
    $ 65.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Ultrasound is among the world's most widely used biomedical imaging technologies due to its relative simplicity, low cost and ability to visualize deep tissues with high spatial and temporal resolution. However, ultrasound has historically had a small role in molecular and cellular imaging due to the lack of contrast agents connected to specific aspects of cellular function such as gene expression. To address this limitation, we are developing the first acoustic biomolecules – proteins that can be imaged with ultrasound. These constructs are based on gas vesicles – a unique class of gas-filled proteins from buoyant photosynthetic microbes, which we adapted as imaging agents for ultrasound in 2014. Since this key initial discovery, our laboratory has led the development of the emerging field of biomolecular ultrasound by engineering the physical, chemical and biological properties of gas vesicles to enable multiplexed imaging, cellular targeting and selective detection in vivo. In parallel, we have worked on transplanting the genetic program encoding gas vesicles into heterologous hosts, recently succeeding in doing so in commensal bacteria relevant to the mammalian microbiome, while in parallel making initial progress on expressing gas vesicles in mammalian cells. In addition, we discovered that gas vesicles can produce susceptibility-weighted MRI contrast erasable by ultrasound, providing an additional readout modality with unique advantages. Here we propose to build on these insights to advance gas vesicles as targeted nanoscale contrast agents, mammalian reporter genes and functional sensors for ultrasound. This work will focus on engineering gas vesicle properties for long-term circulation and extravascular targeting through the bloodstream, achieving robust expression of gas vesicles as reporter genes in mammalian cells, developing nonlinear ultrasound pulse sequences to maximize the sensitivity of gas vesicle imaging, and designing the first acoustic sensors of enzyme activity. The fundamental innovation contained in this research is that gas vesicle are the first biomolecular, genetically engineered and encoded contrast agent of any kind for ultrasound. As a result, they have the potential to transform this imaging modality analogously to the way fluorescent proteins transformed optical microscopy.
项目摘要/摘要 由于其相对,超声是世界上最广泛使用的生物医学成像技术之一 简单,低成本和能够以高空间和临时分辨率可视化深度时间。然而, 由于缺乏对比剂,超声在历史上历史上具有很小的作用在分子和细胞成像中 连接到细胞功能的特定方面,例如基因表达。为了解决这个限制,我们是 开发第一个可以用超声成像的蛋白质的蛋白质。这些结构是 基于燃气蔬菜 - 一种独特的来自浮力微生物的充气蛋白质,我们是我们的 改编为2014年超声检查的成像剂。由于这一关键最初发现,我们的实验室领导了 通过设计物理,化学和 气体蔬菜的生物学特性,以实现多路复用成像,细胞靶向和选择性检测 体内。同时,我们一直致力于将编码加油蔬菜的遗传程序移植到异源 寄主,最近成功地从事与哺乳动物微生物组相关的共生细菌 并行在哺乳动物细胞中表达燃气蔬菜的初步进展。此外,我们发现 燃气蔬菜可以通过超声擦除的易感加权MRI对比度,提供额外的 读取方式具有独特的优势。在这里,我们建议以这些见解为基础,以促进加油蔬菜 作为靶向的纳米级对比剂,超声波的哺乳动物记者基因和功能传感器。这 工作将集中于工程气囊泡特性,用于长期循环和血管外靶向 通过血液,通过哺乳动物细胞中的燃气蔬菜作为报告基因的强劲表达, 开发非线性超声脉冲序列,以最大程度地提高气囊成像的灵敏度,并 设计酶活性的第一个声传感器。这项研究中包含的基本创新 是气囊是任何类型的生物分子,一般设计和编码的对比剂 超声波。结果,它们有可能将这种成像方式类似地转换为方式 荧光蛋白转化了光学显微镜。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(8)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Shapiro其他文献

Mikhail Shapiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Shapiro', 18)}}的其他基金

International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
  • 批准号:
    10609240
  • 财政年份:
    2022
  • 资助金额:
    $ 65.38万
  • 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
  • 批准号:
    10540612
  • 财政年份:
    2022
  • 资助金额:
    $ 65.38万
  • 项目类别:
Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging
用于全脑神经影像的超声波基因编码钙指示剂
  • 批准号:
    10166018
  • 财政年份:
    2021
  • 资助金额:
    $ 65.38万
  • 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
  • 批准号:
    10261864
  • 财政年份:
    2021
  • 资助金额:
    $ 65.38万
  • 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
  • 批准号:
    10488296
  • 财政年份:
    2021
  • 资助金额:
    $ 65.38万
  • 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
  • 批准号:
    10676282
  • 财政年份:
    2021
  • 资助金额:
    $ 65.38万
  • 项目类别:
Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
  • 批准号:
    9804641
  • 财政年份:
    2019
  • 资助金额:
    $ 65.38万
  • 项目类别:
Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
  • 批准号:
    9605856
  • 财政年份:
    2016
  • 资助金额:
    $ 65.38万
  • 项目类别:
Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
  • 批准号:
    8828517
  • 财政年份:
    2014
  • 资助金额:
    $ 65.38万
  • 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
  • 批准号:
    8766150
  • 财政年份:
    2014
  • 资助金额:
    $ 65.38万
  • 项目类别:

相似国自然基金

航天低温推进剂加注系统气液状态声学监测技术研究
  • 批准号:
    62373276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
  • 批准号:
    52350039
  • 批准年份:
    2023
  • 资助金额:
    80 万元
  • 项目类别:
    专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
  • 批准号:
    82302874
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
  • 批准号:
    12374418
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
海洋声学功能材料发展战略研究
  • 批准号:
    52342304
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    专项项目

相似海外基金

Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
  • 批准号:
    10715925
  • 财政年份:
    2023
  • 资助金额:
    $ 65.38万
  • 项目类别:
Mechanoluminescent nanomaterials for optogenetic neuromodulation
用于光遗传学神经调节的机械发光纳米材料
  • 批准号:
    10616188
  • 财政年份:
    2023
  • 资助金额:
    $ 65.38万
  • 项目类别:
Word recognition in dual language learners: The mechanisms underlying listening and reading in two languages
双语言学习者的单词识别:两种语言听力和阅读的机制
  • 批准号:
    10404052
  • 财政年份:
    2021
  • 资助金额:
    $ 65.38万
  • 项目类别:
Evaluation of micro-epidermal actuators on flexible substrate for noninvasive, pediatric-friendly conductive hearing aid
用于无创、儿科友好型传导助听器的柔性基底上的微表皮执行器的评估
  • 批准号:
    10204326
  • 财政年份:
    2021
  • 资助金额:
    $ 65.38万
  • 项目类别:
Word recognition in dual language learners: The mechanisms underlying listening and reading in two languages
双语言学习者的单词识别:两种语言听力和阅读的机制
  • 批准号:
    10217506
  • 财政年份:
    2021
  • 资助金额:
    $ 65.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了