Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
基本信息
- 批准号:10318929
- 负责人:
- 金额:$ 65.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcousticsAddressAreaBacteriaBiochemicalBiologicalBiologyBiosensorBlood CirculationCell physiologyCellsChemicalsContrast MediaDetectionDevelopmentDiagnosticDimensionsElementsEngineeringEscherichia coliEventExtravasationFrequenciesGasesGastrointestinal tract structureGene ExpressionGeneticGenetic EngineeringGoalsImageImaging technologyLaboratoriesMagnetic Resonance ImagingMalignant NeoplasmsMammalian CellMedicineMetalloproteasesMethodsMicrobeMicroscopyModalityModelingMolecularMolecular TargetMultimodal ImagingMusNanostructuresNatureOpticsPhysiologic pulsePredispositionPropertyProteinsReporterReporter GenesResearchResolutionRoleSalmonella typhimuriumSensitivity and SpecificitySignal TransductionSurface PropertiesTechniquesTechnologyTherapeutic AgentsTissuesTransplantationUltrasonographyVesicleWorkanalogbasebiological researchbiomedical imagingcellular imagingcellular targetingcommensal bacteriacostdesignenzyme activityextracellularimaging agentimaging modalityin vivoinnovationinsightmicrobiomemolecular diagnosticsmolecular imagingmulticatalytic endopeptidase complexmultidisciplinarymultiplexed imagingnanonanoscalenon-invasive imagingpressureprogramsresearch and developmentresponsesensorsignal processingsuccesssynthetic biologytargeted imagingtemporal measurementtumortumor xenograftultrasounduptake
项目摘要
PROJECT SUMMARY/ABSTRACT
Ultrasound is among the world's most widely used biomedical imaging technologies due to its relative
simplicity, low cost and ability to visualize deep tissues with high spatial and temporal resolution. However,
ultrasound has historically had a small role in molecular and cellular imaging due to the lack of contrast agents
connected to specific aspects of cellular function such as gene expression. To address this limitation, we are
developing the first acoustic biomolecules – proteins that can be imaged with ultrasound. These constructs are
based on gas vesicles – a unique class of gas-filled proteins from buoyant photosynthetic microbes, which we
adapted as imaging agents for ultrasound in 2014. Since this key initial discovery, our laboratory has led the
development of the emerging field of biomolecular ultrasound by engineering the physical, chemical and
biological properties of gas vesicles to enable multiplexed imaging, cellular targeting and selective detection in
vivo. In parallel, we have worked on transplanting the genetic program encoding gas vesicles into heterologous
hosts, recently succeeding in doing so in commensal bacteria relevant to the mammalian microbiome, while in
parallel making initial progress on expressing gas vesicles in mammalian cells. In addition, we discovered that
gas vesicles can produce susceptibility-weighted MRI contrast erasable by ultrasound, providing an additional
readout modality with unique advantages. Here we propose to build on these insights to advance gas vesicles
as targeted nanoscale contrast agents, mammalian reporter genes and functional sensors for ultrasound. This
work will focus on engineering gas vesicle properties for long-term circulation and extravascular targeting
through the bloodstream, achieving robust expression of gas vesicles as reporter genes in mammalian cells,
developing nonlinear ultrasound pulse sequences to maximize the sensitivity of gas vesicle imaging, and
designing the first acoustic sensors of enzyme activity. The fundamental innovation contained in this research
is that gas vesicle are the first biomolecular, genetically engineered and encoded contrast agent of any kind for
ultrasound. As a result, they have the potential to transform this imaging modality analogously to the way
fluorescent proteins transformed optical microscopy.
项目概要/摘要
超声波是世界上使用最广泛的生物医学成像技术之一,因为它的相对
简单、成本低并且能够以高空间和时间分辨率可视化深层组织。
由于缺乏造影剂,超声波历来在分子和细胞成像中发挥的作用很小
与细胞功能的特定方面(例如基因表达)相关。为了解决这一限制,我们正在研究。
开发第一个声学生物分子——可以用超声波成像的蛋白质。
基于气体囊泡——一种来自浮力光合微生物的独特的充满气体的蛋白质,我们将其
2014 年用作超声显像剂。自从这一关键的初步发现以来,我们的实验室一直引领着
通过物理、化学和工程技术的发展,生物分子超声这一新兴领域的发展
气体囊泡的生物学特性,可实现多重成像、细胞靶向和选择性检测
与此同时,我们还致力于将编码气体囊泡的遗传程序移植到异源体内。
最近在与哺乳动物微生物组相关的共生细菌中成功地做到了这一点,同时
与此同时,我们在哺乳动物细胞中表达气体囊泡方面取得了初步进展。
气体囊泡可以产生可通过超声波擦除的磁化率加权 MRI 对比,从而提供额外的
在这里,我们建议以这些见解为基础来推进气体囊泡的发展。
作为靶向纳米级造影剂、哺乳动物报告基因和超声功能传感器。
工作重点是设计气泡特性以实现长期循环和血管外靶向
通过血流,在哺乳动物细胞中实现气体囊泡作为报告基因的稳健表达,
开发非线性超声脉冲序列以最大限度地提高气体囊泡成像的灵敏度,以及
设计第一个酶活性声学传感器是本研究的根本创新。
气囊是第一个生物分子、基因工程和编码的造影剂
因此,他们有可能像超声波一样改变这种成像方式。
荧光蛋白改变了光学显微镜。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(8)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Shapiro其他文献
Mikhail Shapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Shapiro', 18)}}的其他基金
International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
- 批准号:
10609240 - 财政年份:2022
- 资助金额:
$ 65.38万 - 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
- 批准号:
10540612 - 财政年份:2022
- 资助金额:
$ 65.38万 - 项目类别:
Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging
用于全脑神经影像的超声波基因编码钙指示剂
- 批准号:
10166018 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10261864 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10488296 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10676282 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
- 批准号:
9804641 - 财政年份:2019
- 资助金额:
$ 65.38万 - 项目类别:
Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
- 批准号:
9605856 - 财政年份:2016
- 资助金额:
$ 65.38万 - 项目类别:
Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
- 批准号:
8828517 - 财政年份:2014
- 资助金额:
$ 65.38万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
8766150 - 财政年份:2014
- 资助金额:
$ 65.38万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
Mechanoluminescent nanomaterials for optogenetic neuromodulation
用于光遗传学神经调节的机械发光纳米材料
- 批准号:
10616188 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
Word recognition in dual language learners: The mechanisms underlying listening and reading in two languages
双语言学习者的单词识别:两种语言听力和阅读的机制
- 批准号:
10404052 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Evaluation of micro-epidermal actuators on flexible substrate for noninvasive, pediatric-friendly conductive hearing aid
用于无创、儿科友好型传导助听器的柔性基底上的微表皮执行器的评估
- 批准号:
10204326 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Word recognition in dual language learners: The mechanisms underlying listening and reading in two languages
双语言学习者的单词识别:两种语言听力和阅读的机制
- 批准号:
10217506 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别: