Mechanoluminescent nanomaterials for optogenetic neuromodulation
用于光遗传学神经调节的机械发光纳米材料
基本信息
- 批准号:10616188
- 负责人:
- 金额:$ 28.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAcousticsAddressAnimal TestingAnimalsBRAIN initiativeBiomedical EngineeringBrainCardiovascular systemCationsCell LineCognitiveColloidsComplexComputer ModelsDataDependenceDevelopmentDimensionsDiseaseDissectionElectrospinningEncapsulatedEngineeringExhibitsFiberFluoridesGoalsGrowthHealthHumanHybridsImpairmentIn SituIn VitroInjectableIon ChannelIonsLightLongitudinal StudiesMetalsMethodsMissionMorphologyMotorNanostructuresNervous SystemNeuronsNeurophysiology - biologic functionNeurosciences ResearchPathogenesisPathologicPenetrationPerformancePersonal SatisfactionPhasePhotonsPhysiologicalPhysiologyPolymersPrevalencePreventionProcessPropertyPublic HealthResearchResolutionSensoryShapesSignal TransductionSiteSourceStructureSystemTechnologyTestingTherapeutic InterventionTissuesTransducersUnited States National Institutes of HealthYinaging populationbasebrain tissuecandidate identificationeffective therapyelectrical potentialimprovedin vitro Modelinnovative technologiesinterestlight emissionmagnetic fieldnanocompositenanofibernanomaterialsnanoparticlenanopolymernerve stem cellnervous system disorderneuralneural circuitneuroregulationnew technologynovelnovel therapeutic interventionoptogeneticsparticlepolyvinylidene fluoriderapid growthresponsespatiotemporaltherapeutic developmenttooltransmission processultrasoundvinyl fluoridewirelesszinc sulfide
项目摘要
The exponential surge in the prevalence of neurological diseases/disorders, partly due to the rapid growth in the
aged population, poses a significant challenge to the prevention and treatment of impairments in cognitive,
sensory, and motor functions. However, our insufficient understanding of the mechanisms underlying the
pathogenesis of many neurological diseases delays the development of effective treatments to address this
challenge. Recent advances in optogenetics have provided novel tools to investigate complex neural circuits and
brain functions. Due to a limited penetration depth of photons, however, the invasiveness of light sources into
the brain tissue of live animals to control opto-sensitive ion channels has been one of the major challenges in
optogenetics. In this regard, our goal is to develop a modular mechanoluminescent (ML) material platform for
the non-invasive, acoustic activation of various optogenetic channels for neural modulation with a high
spatiotemporal resolution. This project builds upon our recent technological achievements, in which we
developed various synthesis methods to produce novel structures of inorganic nanomaterials and high
piezoelectric organic nanofiber fragments. Based on our preliminary computational modeling, we hypothesize
that such structures enable greater effective strains that maximize the ML performance of the inorganic-organic
hybrid nanomaterials. This project aims to develop two unique optogenetic modulation systems based on ML
nanomaterials. In Aim 1, we will synthesize zinc sulfide nanoparticles doped with various metal ions to control
emission wavelengths and investigate the effect of nanoparticle morphology and dimension on ML performance.
Furthermore, the interaction between those nanoparticles and encapsulating polymer will be optimized to
maximize the ML performance of nanocomposites. In Aim 2, we will characterize the piezoelectric properties of
electrospun fiber-derived nanofragments and investigate the incorporation of ML nanoparticles into the
piezoelectric nanofragments to boost ML performance. An in vitro model based on a neural stem cell line
transduced with Channelrhodopsin-2 will be utilized to determine the performance of these ML nanomaterials
for neuromodulation. Overall, we anticipate that these studies will provide material bases for ML nanoparticles
injectable into the circulatory system (Aim 1) and for ML nanofragments injectable into a site of interest (Aim 2).
The results of this exploratory project are expected to identify candidates for ML nanomaterial platforms for
further optimization and animal testing in subsequent studies.
神经系统疾病/疾病患病率的指数激增,部分是由于
老年人口,对预防和治疗认知障碍的构成重大挑战,
感觉和运动功能。但是,我们对基于的机制的理解不足
许多神经系统疾病的发病机理延迟了有效治疗的发展来解决这一问题
挑战。光遗传学的最新进展提供了研究复杂的神经回路和
大脑功能。但是,由于光子的渗透深度有限,光源的侵入性
活动物的脑组织控制光敏感的离子通道一直是
光遗传学。在这方面,我们的目标是开发一个模块化机械发光(ML)材料平台
各种光遗传通道的非侵入性,声学激活,用于神经调节
时空分辨率。这个项目以我们最近的技术成就为基础
开发了各种综合方法,以生成无机纳米材料的新结构和较高的结构
压电有机纳米纤维碎片。根据我们的初步计算建模,我们假设
这样的结构可以使更大的有效菌株最大化无机有机的ML性能
混合纳米材料。该项目旨在开发基于ML的两个独特的光遗传学调制系统
纳米材料。在AIM 1中,我们将合成用各种金属离子掺杂的硫化锌纳米颗粒
发射波长并研究纳米颗粒形态和维度对ML性能的影响。
此外,这些纳米颗粒与封装聚合物之间的相互作用将被优化为
最大化纳米复合材料的ML性能。在AIM 2中,我们将表征的压电特性
电纺纤维衍生的纳米碎片,并研究将ML纳米颗粒掺入
压电纳米碎片以提高ML性能。基于神经干细胞系的体外模型
将使用通道Ropopsin-2传递来确定这些ML纳米材料的性能
用于神经调节。总体而言,我们预计这些研究将为ML纳米颗粒提供材料基础
可注射到循环系统(AIM 1)和ML纳米碎片中的注射到感兴趣的部位(AIM 2)。
预计该探索项目的结果将确定ML纳米材料平台的候选者
在随后的研究中进一步优化和动物测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Nam其他文献
Jin Nam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 28.24万 - 项目类别:
Word recognition in dual language learners: The mechanisms underlying listening and reading in two languages
双语言学习者的单词识别:两种语言听力和阅读的机制
- 批准号:
10404052 - 财政年份:2021
- 资助金额:
$ 28.24万 - 项目类别:
Evaluation of micro-epidermal actuators on flexible substrate for noninvasive, pediatric-friendly conductive hearing aid
用于无创、儿科友好型传导助听器的柔性基底上的微表皮执行器的评估
- 批准号:
10204326 - 财政年份:2021
- 资助金额:
$ 28.24万 - 项目类别:
Word recognition in dual language learners: The mechanisms underlying listening and reading in two languages
双语言学习者的单词识别:两种语言听力和阅读的机制
- 批准号:
10217506 - 财政年份:2021
- 资助金额:
$ 28.24万 - 项目类别:
Evaluation of micro-epidermal actuators on flexible substrate for noninvasive, pediatric-friendly conductive hearing aid
用于无创、儿科友好型传导助听器的柔性基底上的微表皮执行器的评估
- 批准号:
10917604 - 财政年份:2021
- 资助金额:
$ 28.24万 - 项目类别: