Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
基本信息
- 批准号:9804641
- 负责人:
- 金额:$ 116.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAnimal ModelAnimalsAreaBRAIN initiativeBehavioralBioavailableBlood - brain barrier anatomyBrainBrain regionCellsClinicalComplexDevelopmentDirected Molecular EvolutionDiseaseDoseEngineeringEvolutionFaceFocused UltrasoundFunctional ImagingFutureGene DeliveryGeneticGoalsHippocampus (Brain)HistologicHumanImmunologicsLigandsLocationMacacaMagnetic Resonance ImagingMediatingMemoryMethodsMolecular TargetMonitorMonkeysMusNamesNatureNeuronsNeurosciencesOralOrganismPatientsPerformancePharmacologyPhasePrimatesProceduresReagentSafetySerotypingSpecificitySystemTechniquesTechnologyTestingTransfectionTranslatingTranslationsUltrasonicsUltrasonographyViralViral VectorVirusWorkXCL1 geneadeno-associated viral vectorbehavioral studycell typecraniumdesigndesigner receptors exclusively activated by designer drugsexcitatory neuronexperimental studyimage guidedimprovedin vivoinnovationintersectionalitymillimeterneural circuitneuropsychiatric disorderneuroregulationnon-invasive imagingnonhuman primateoptogeneticspressurereceptorrelating to nervous systemsmall moleculesuccesstranslation to humansvisual processing
项目摘要
SUMMARY
Controlling specific neural circuits across large areas of the brain is a major technology goal of the BRAIN
Initiative. To achieve this goal, technologies should ideally provide a combination of spatial, temporal and cell-
type specificity and be noninvasive to facilitate their translation across animal models and, ultimately, human
patients. Here, we propose an approach to modulating neural circuits noninvasively with spatial, cell-type and
temporal specificity. This approach, which we have named Acoustically Targeted Chemogenetics, or ATAC,
uses transient focused ultrasound (FUS) blood brain barrier opening (BBBO) to transduce neurons at specific
locations in the brain with virally-encoded engineered receptors, which subsequently respond to systemically
administered bio-inert compounds to activate or inhibit the activity of these neurons. This technology allows a
brief, noninvasive procedure to make one or more specific brain regions capable of being selectively modulated
using orally bioavailable compounds. In preliminary experiments, we have implemented this concept in mice by
using ATAC to noninvasively target AAV9 viral vectors encoding chemogenetic DREADD receptors to excitatory
neurons in the hippocampus, and showing that this enables pharmacological inhibition of memory formation.
Building on this proof of concept, we will now scale ATAC to work in non-human primates. This goal is particularly
important given the relatively limited success of existing technologies, including optogenetics and conventional
chemogenetics, in robust behavioral neuromodulation in larger animals. Scaling ATAC to larger animals requires
several innovations beyond the core concept, including evolving viral vectors for more efficient and intersectional
transfection of neurons with FUS-BBBO, developing ultrasound methods to overcome skull aberrations and
enable precise targeting in large animals, establishing ways of confirming the functionality of ATAC non-
invasively with functional imaging, and optimizing the selection and pharmacological administration of
chemogenetic ligands for large-animal behavioral studies. In this project, we will first establish the basic
capabilities of ATAC in NHPs and integrate them with non-invasive functional imaging, setting a baseline for
ATAC performance. Then, we will use a pioneering technology for in vivo evolution of viral vectors to develop
AAV viruses specifically optimized to efficiently deliver chemogenetic receptors to brain regions targeted with
FUS-BBBO. In parallel, we will develop non-clinical image guidance and aberration correction methods to enable
precise targeting and verification of FUS-BBBO in NHPs. This will make it possible for academic groups without
access to expensive clinical FUS systems to perform ATAC in larger organisms. Finally, as motivating example
applications, we will demonstrate that the optimized ATAC paradigm can be used to inhibit multiple distinct brain
regions in macaques, reversibly and repeatably modulating their ability to recognize faces and also apply it in a
sensorimotor circuit to alter functional connectivity. We will also show its stability, reliability and non-toxicity.
概括
控制大脑大区域的特定神经回路是大脑的主要技术目标
倡议。为了实现这一目标,理想情况下应提供空间,时间和细胞的组合
键入特异性,无创,以促进它们在动物模型中的翻译,最终人类
患者。在这里,我们提出了一种通过空间,细胞类型和
时间特异性。这种方法,我们将其命名为拟声靶向的化学遗传学或ATAC,
使用瞬态聚焦超声(FUS)血脑屏障开口(BBBO)在特定的
用病毒编码的工程受体在大脑中的位置,随后对系统做出反应
施用的生物启动化合物激活或抑制这些神经元的活性。这项技术允许
简短的无创方法,使一个或多个特定的大脑区域能够选择性调节
使用口服生物利用化合物。在初步实验中,我们通过
使用ATAC非侵入性靶向编码化学遗传DREADD受体的AAV9病毒载体
海马中的神经元,并表明这可以对记忆形成的药理抑制作用。
在此概念证明的基础上,我们现在将扩展ATAC在非人类灵长类动物中工作。这个目标特别是
考虑到现有技术的成功相对有限,包括光遗传学和常规技术的成功很重要
化学遗传学,在较大动物的鲁棒行为神经调节中。将ATAC缩放到大型动物需要
核心概念以外的几项创新,包括发展病毒向量,以提高高效和交叉
通过FUS-BBBO转染神经元,开发了克服颅骨畸变和
在大型动物中启用精确的靶向,建立确认ATAC非 - 的功能的方法
具有功能成像的侵入性,并优化
用于大动画行为研究的化学生成配体。在这个项目中,我们将首先建立基本
ATAC在NHP中的功能并将其与非侵入性功能成像集成在一起,为
ATAC性能。然后,我们将使用开创性的技术进行病毒媒介的体内演变
专门优化的AAV病毒可有效地将化学发生受体传递给针对的大脑区域
FUS-BBBO。同时,我们将开发非临床图像指导和畸变校正方法以实现
NHP中FUS-BBBO的精确靶向和验证。这将使没有
访问昂贵的临床FUS系统以在较大的生物体中执行ATAC。最后,作为激励人心的榜样
应用程序,我们将证明优化的ATAC范式可用于抑制多个不同的大脑
猕猴中的区域,可逆,重复地调节其识别面的能力,并将其应用于
感觉运动电路以改变功能连通性。我们还将显示其稳定性,可靠性和无毒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Shapiro其他文献
Mikhail Shapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Shapiro', 18)}}的其他基金
International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
- 批准号:
10609240 - 财政年份:2022
- 资助金额:
$ 116.22万 - 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
- 批准号:
10540612 - 财政年份:2022
- 资助金额:
$ 116.22万 - 项目类别:
Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging
用于全脑神经影像的超声波基因编码钙指示剂
- 批准号:
10166018 - 财政年份:2021
- 资助金额:
$ 116.22万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10261864 - 财政年份:2021
- 资助金额:
$ 116.22万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10488296 - 财政年份:2021
- 资助金额:
$ 116.22万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10676282 - 财政年份:2021
- 资助金额:
$ 116.22万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
10318929 - 财政年份:2019
- 资助金额:
$ 116.22万 - 项目类别:
Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
- 批准号:
9605856 - 财政年份:2016
- 资助金额:
$ 116.22万 - 项目类别:
Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
- 批准号:
8828517 - 财政年份:2014
- 资助金额:
$ 116.22万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
8766150 - 财政年份:2014
- 资助金额:
$ 116.22万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
- 批准号:
10727499 - 财政年份:2023
- 资助金额:
$ 116.22万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 116.22万 - 项目类别:
5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
- 批准号:
10677283 - 财政年份:2023
- 资助金额:
$ 116.22万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 116.22万 - 项目类别:
Development of a Micro-coil Based Cochlear Implant
基于微线圈的人工耳蜗的开发
- 批准号:
10658004 - 财政年份:2023
- 资助金额:
$ 116.22万 - 项目类别: