Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
基本信息
- 批准号:10261864
- 负责人:
- 金额:$ 117.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAnatomyAnimalsBiologicalBiological PhenomenaBiologyBiosensorBrain regionCell TherapyCell physiologyCellsCommunicationDepositionDevelopmentEngineeringFluorescence MicroscopyFocused UltrasoundGastrointestinal tract structureGene ExpressionGoalsHuman bodyImageImmuneImmunotherapyInvestigationLightLocationMechanicsMedical ImagingMedical TechnologyMethodsModalityNeuronsNeurosciencesOperative Surgical ProceduresOpticsPathway interactionsPenetrationPhysicsProcessPropertyProteinsReporter GenesResearchResearch PersonnelSignal TransductionStructureTechniquesTechnologyTimeTissuesTravelTumor-infiltrating immune cellsUltrasonographyVisible RadiationWorkbiological systemscellular imagingin vivomechanical forcemicrobial colonizationmolecular imagingneuroregulationoptogeneticsreceptorremote controlsoundtooltumor
项目摘要
SUMMARY
The discovery and development of fluorescent proteins and optogenetics revolutionized biology by making it
possible to image and control specific cellular processes with visible light. While these tools have enabled
countless biological discoveries, the poor penetration of light into living tissue makes it difficult to use optical
techniques in intact animals. As a result, biological phenomena ranging from the signaling of neurons in deep-
brain regions, to the infiltration of immune cells into tumors, to the microbial colonization of the GI tract, are
challenging to study within their natural in vivo context. If instead of light it were possible to visualize and
manipulate cellular function using a more penetrant form of energy such as ultrasound, this would open
previously inaccessible domains of in vivo biology to direct investigation. In addition, it would enhance the
development of cell-based therapies by allowing cellular agents to be seen and controlled after administration
into the human body. The physics of ultrasound make it an ideal modality for deep-tissue cellular communication.
Sound waves in the MHz range are weakly scattered by tissue and can therefore penetrate several cm into the
body. With wavelengths on the order of 100 µm and travel times < 1 ms, ultrasound can access many key
structures and processes. When focused, sound waves can deliver mechanical and thermal energy to precise
anatomical locations. These properties have already made ultrasound one of the world’s most widely used
technologies for medical imaging and non-invasive surgery. However, the potential of ultrasound to serve as a
tool for cellular imaging and control has been relatively untapped due to a lack of methods to connect it to the
function of specific cells and biomolecules. In previous work, the Shapiro lab has pioneered the use of ultrasound
in cellular and molecular imaging by developing the first acoustic reporter genes and biosensors for ultrasound,
aiming to “do for ultrasound what fluorescent proteins have done for fluorescence microscopy”. The major goal
of our proposed new research direction is to “do for ultrasound what optogenetics has done for light” by giving
sound waves the ability to control specific cellular functions such as neuronal excitation, gene expression and
intracellular signaling in vivo. The basic principle of our approach is to (1) use focused ultrasound to deposit
acoustic energy at a specific location in tissue, (2) use genetically encoded “acoustic antennae” to convert this
energy into local mechanical force, and (3) use this force to actuate mechanosensitive receptors to produce
specific cellular signals. We will implement this approach in neurons and immune cells to enable unique
neuroscience and cell therapy applications. If successful, this work will help establish the new field of
sonogenetics by providing researchers and clinicians with the unprecedented ability to “point and click” on cells
deep within the body and tell them what to do.
概括
荧光蛋白和光遗传学的发现和开发通过使生物学彻底改变了生物学
可以用可见光来形象和控制特定的蜂窝过程。这些工具已启用
无数的生物学发现,光渗透到活组织中的不良渗透使得很难使用光学
完整动物的技术。结果,生物学现象范围从深处神经元的信号传导
脑区域将免疫细胞浸润到肿瘤中,gi段的微生物定植是
在其自然体内背景下学习的挑战。如果不是光,则可以看到和
使用更渗透的能量(例如超声)操纵细胞功能,这将打开
以前在体内生物学领域无法直接研究。另外,它将增强
通过允许在给药后看到和控制细胞剂来开发基于细胞的疗法
进入人体。超声的物理学使其成为深度组织蜂窝通信的理想方式。
MHz范围内的声波被组织薄弱,因此可以穿透几cm
身体。超声波的波长为100 µm,旅行时间<1 ms,可以访问许多键
结构和过程。当聚焦时,声波可以将机械和热能传递至精确
解剖位置。这些属性已经使超声波成为世界上最广泛使用的
医学成像和非侵入性手术的技术。但是,超声波的潜力
由于缺乏将其连接到的方法,用于蜂窝成像和控制的工具已相对尚未开发
特定细胞和生物分子的功能。在以前的工作中,Shapiro Lab开创了超声的使用
在细胞和分子成像中,通过开发第一个声学报告基因和生物传感器以进行超声,
旨在“超声检查荧光显微镜为荧光蛋白所做的事情”。主要目标
我们拟议的新研究方向是“超声波遗传学为光造成的光线做到的。”
声波控制特定细胞功能的能力,例如神经元兴奋,基因表达和
体内细胞内信号传导。我们方法的基本原理是(1)使用集中的超声来存入
在组织中特定位置的声能,(2)使用遗传编码的“声触角”来转换这一点
能量进入局部机械力,(3)使用此力激活机械接收器以产生
特定的细胞信号。我们将在神经元和免疫细胞中实施这种方法,以实现独特
神经科学和细胞治疗应用。如果成功,这项工作将有助于建立新领域
通过为研究人员和临床医生提供前所未有的“指向和点击”细胞的能力来发声。
在身体内部深处,告诉他们该怎么做。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Shapiro其他文献
Mikhail Shapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Shapiro', 18)}}的其他基金
International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
- 批准号:
10609240 - 财政年份:2022
- 资助金额:
$ 117.25万 - 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
- 批准号:
10540612 - 财政年份:2022
- 资助金额:
$ 117.25万 - 项目类别:
Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging
用于全脑神经影像的超声波基因编码钙指示剂
- 批准号:
10166018 - 财政年份:2021
- 资助金额:
$ 117.25万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10488296 - 财政年份:2021
- 资助金额:
$ 117.25万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10676282 - 财政年份:2021
- 资助金额:
$ 117.25万 - 项目类别:
Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
- 批准号:
9804641 - 财政年份:2019
- 资助金额:
$ 117.25万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
10318929 - 财政年份:2019
- 资助金额:
$ 117.25万 - 项目类别:
Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
- 批准号:
9605856 - 财政年份:2016
- 资助金额:
$ 117.25万 - 项目类别:
Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
- 批准号:
8828517 - 财政年份:2014
- 资助金额:
$ 117.25万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
8766150 - 财政年份:2014
- 资助金额:
$ 117.25万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Development of a Micro-coil Based Cochlear Implant
基于微线圈的人工耳蜗的开发
- 批准号:
10658004 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别: