Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
基本信息
- 批准号:10261864
- 负责人:
- 金额:$ 117.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAnatomyAnimalsBiologicalBiological PhenomenaBiologyBiosensorBrain regionCell TherapyCell physiologyCellsCommunicationDepositionDevelopmentEngineeringFluorescence MicroscopyFocused UltrasoundGastrointestinal tract structureGene ExpressionGoalsHuman bodyImageImmuneImmunotherapyInvestigationLightLocationMechanicsMedical ImagingMedical TechnologyMethodsModalityNeuronsNeurosciencesOperative Surgical ProceduresOpticsPathway interactionsPenetrationPhysicsProcessPropertyProteinsReporter GenesResearchResearch PersonnelSignal TransductionStructureTechniquesTechnologyTimeTissuesTravelTumor-infiltrating immune cellsUltrasonographyVisible RadiationWorkbiological systemscellular imagingin vivomechanical forcemicrobial colonizationmolecular imagingneuroregulationoptogeneticsreceptorremote controlsoundtooltumor
项目摘要
SUMMARY
The discovery and development of fluorescent proteins and optogenetics revolutionized biology by making it
possible to image and control specific cellular processes with visible light. While these tools have enabled
countless biological discoveries, the poor penetration of light into living tissue makes it difficult to use optical
techniques in intact animals. As a result, biological phenomena ranging from the signaling of neurons in deep-
brain regions, to the infiltration of immune cells into tumors, to the microbial colonization of the GI tract, are
challenging to study within their natural in vivo context. If instead of light it were possible to visualize and
manipulate cellular function using a more penetrant form of energy such as ultrasound, this would open
previously inaccessible domains of in vivo biology to direct investigation. In addition, it would enhance the
development of cell-based therapies by allowing cellular agents to be seen and controlled after administration
into the human body. The physics of ultrasound make it an ideal modality for deep-tissue cellular communication.
Sound waves in the MHz range are weakly scattered by tissue and can therefore penetrate several cm into the
body. With wavelengths on the order of 100 µm and travel times < 1 ms, ultrasound can access many key
structures and processes. When focused, sound waves can deliver mechanical and thermal energy to precise
anatomical locations. These properties have already made ultrasound one of the world’s most widely used
technologies for medical imaging and non-invasive surgery. However, the potential of ultrasound to serve as a
tool for cellular imaging and control has been relatively untapped due to a lack of methods to connect it to the
function of specific cells and biomolecules. In previous work, the Shapiro lab has pioneered the use of ultrasound
in cellular and molecular imaging by developing the first acoustic reporter genes and biosensors for ultrasound,
aiming to “do for ultrasound what fluorescent proteins have done for fluorescence microscopy”. The major goal
of our proposed new research direction is to “do for ultrasound what optogenetics has done for light” by giving
sound waves the ability to control specific cellular functions such as neuronal excitation, gene expression and
intracellular signaling in vivo. The basic principle of our approach is to (1) use focused ultrasound to deposit
acoustic energy at a specific location in tissue, (2) use genetically encoded “acoustic antennae” to convert this
energy into local mechanical force, and (3) use this force to actuate mechanosensitive receptors to produce
specific cellular signals. We will implement this approach in neurons and immune cells to enable unique
neuroscience and cell therapy applications. If successful, this work will help establish the new field of
sonogenetics by providing researchers and clinicians with the unprecedented ability to “point and click” on cells
deep within the body and tell them what to do.
概括
荧光蛋白和光遗传学的发现和发展彻底改变了生物学
虽然这些工具已经启用,但可以用可见光对特定的细胞过程进行成像和控制。
无数的生物学发现,光对活体组织的渗透性较差,使得光学技术难以使用
结果,从深部神经元信号传导的生物现象。
大脑区域、免疫细胞浸润到肿瘤、胃肠道微生物定植,这些都是
如果可以不用光来进行可视化和观察,那么在它们的自然体内环境中进行研究就具有挑战性。
使用更具渗透性的能量形式(例如超声波)来操纵细胞功能,这将打开
此外,它将增强以前无法进入的体内生物学领域的直接研究。
通过允许在给药后观察和控制细胞制剂来开发基于细胞的疗法
超声波的物理原理使其成为深层组织细胞通讯的理想方式。
MHz范围内的声波被组织微弱散射,因此可以穿透几厘米进入组织
超声波的波长约为 100 µm,传播时间 < 1 ms,可以访问许多按键。
当聚焦时,声波可以精确地传递机械能和热能。
这些特性已经使超声波成为世界上使用最广泛的技术之一。
然而,超声波作为医疗成像和非侵入性手术的潜力。
由于缺乏将其连接到细胞的方法,用于细胞成像和控制的工具相对尚未开发。
在之前的工作中,夏皮罗实验室率先使用了超声波。
通过开发第一个声学报告基因和超声波生物传感器,在细胞和分子成像领域,
旨在“为超声波做荧光蛋白为荧光显微镜所做的事情”。
我们提出的新研究方向是“为超声波做光遗传学为光所做的事情”
声波控制特定细胞功能的能力,例如神经元兴奋、基因表达和
我们的方法的基本原理是(1)使用聚焦超声沉积。
组织中特定位置的声能,(2) 使用基因编码的“声波天线”将其转换为
将能量转化为局部机械力,并且(3)利用该力来驱动机械敏感受体以产生
我们将在神经元和免疫细胞中实施这种方法,以实现独特的细胞信号。
如果成功,这项工作将有助于建立神经科学和细胞治疗应用的新领域。
声遗传学为研究人员和反叛者提供前所未有的“指向并点击”细胞的能力
深入身体并告诉他们该怎么做。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Shapiro其他文献
Mikhail Shapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Shapiro', 18)}}的其他基金
International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
- 批准号:
10609240 - 财政年份:2022
- 资助金额:
$ 117.25万 - 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
- 批准号:
10540612 - 财政年份:2022
- 资助金额:
$ 117.25万 - 项目类别:
Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging
用于全脑神经影像的超声波基因编码钙指示剂
- 批准号:
10166018 - 财政年份:2021
- 资助金额:
$ 117.25万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10488296 - 财政年份:2021
- 资助金额:
$ 117.25万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10676282 - 财政年份:2021
- 资助金额:
$ 117.25万 - 项目类别:
Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
- 批准号:
9804641 - 财政年份:2019
- 资助金额:
$ 117.25万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
10318929 - 财政年份:2019
- 资助金额:
$ 117.25万 - 项目类别:
Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
- 批准号:
9605856 - 财政年份:2016
- 资助金额:
$ 117.25万 - 项目类别:
Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
- 批准号:
8828517 - 财政年份:2014
- 资助金额:
$ 117.25万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
8766150 - 财政年份:2014
- 资助金额:
$ 117.25万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Development of a Micro-coil Based Cochlear Implant
基于微线圈的人工耳蜗的开发
- 批准号:
10658004 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别: