Use of machine learning to quantify cognitive function in AD, FTD, and DLB
使用机器学习来量化 AD、FTD 和 DLB 中的认知功能
基本信息
- 批准号:10288487
- 负责人:
- 金额:$ 20.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseArtificial IntelligenceBiological MarkersBrain DiseasesCharacteristicsClassificationClinicalCognitionCognition DisordersCognitiveCollectionComputational LinguisticsDementiaDevelopmentDiagnosticDiseaseElementsEmotionsEvaluationExhibitsFrontotemporal Lobar DegenerationsGenerationsGrainHandImpaired cognitionImpairmentIndividualLanguageLearningLewy Body DementiaLewy Body DiseaseLinguisticsLinkMachine LearningMagnetic Resonance ImagingMapsMeasurableMeasurementMeasuresMemoryMethodsModelingMonitorNamesNatural Language ProcessingNerve DegenerationOutcomePathologyPatientsPerformancePersonsPhenotypePositron-Emission TomographyProgressive AphasiasPsychometricsResearchRetrievalSamplingSemanticsSeriesSpeechSyndromeSystemTestingTheoretical modelTimeautomated analysisbasebehavioral variant frontotemporal dementiacerebral atrophyclinical phenotypecognitive functioncognitive testingcohortexecutive functionimprovedinnovationmachine learning methodneural networkneurodegenerative dementianeuroimagingnovel strategiespatient responseperformance testsphonologyprognosticsyntaxtau Proteinsunsupervised learning
项目摘要
Project Abstract / Summary
Cognitive assessment is a key element of the diagnostic evaluation of patients suspected of having
early symptomatic stages of neurodegenerative brain diseases, including Alzheimer’s disease (AD),
Frontotemporal Lobar Degeneration (FTLD), and Lewy Body Disease (LBD). As biomarkers mature, the
field is separating clinical syndromes arising from these diseases from the neuropathologic changes
themselves, leading to concerns about classification systems for the illnesses these diseases produce.
Many tests typically employed in cognitive assessment are verbal, often implemented by an
examiner asking the patient a question and the patient answering. These tests are typically scored by
hand, with the examiner counting correct or incorrect answers and a simple score being generated
against normative scores. Many of the tests still in use were developed 30+ years ago. An exciting
array of recent advances in artificial intelligence methods has begun to enable the measurement and
classification of language and other cognitive characteristics captured in audio recordings.
Here we introduce a new approach to accomplishing both of these possibilities. Recent
developments in Natural Language Processing (NLP) and Machine Learning (ML) have now made
possible the automated discovery and classification of features measurable in speech samples. Once
established, these feature sets can be connected to distributions of cortical atrophy, thus enabling links
between specific cognitive abnormalities and underlying neural networks. This approach to the analysis
of clinical dementia syndromes can be achieved through a sufficiently large number of cognitive test
measures recorded as speech samples. In addition, such analyses require the use of the latest
generation of artificial intelligence models, called transformer-networks, to be able to learn the unique
ways in which individuals with cognitive impairment or dementia respond to questions requiring
memory, executive function, emotion, or language. In Aim 1, we will investigate the validity of an
unsupervised artificial intelligence model for measuring cognitive abnormalities in patients with AD,
FTLD, or DLB against traditional clinical measures and against MRI measures of regional brain atrophy.
In Aim 2, we will investigate the performance of an unsupervised artificial intelligence model for
classifying cognitive abnormalities in AD, FTLD, and DLB patients into clusters. In Aim 3, we will
evaluate the reliability of these automated measures of cognitive abnormalities in AD, FTLD, and DLB.
Through a finer-grained analysis of cognition in people with AD, FTLD, or DLB, it should be possible to
develop better understanding of the overlapping and dissociable features of these dementias, aiming
for improved diagnostic classification and better monitoring.
项目摘要/总结
认知评估是疑似患有以下疾病的患者诊断评估的关键要素
神经退行性脑部疾病的早期症状阶段,包括阿尔茨海默病(AD),
额颞叶变性 (FTLD) 和路易体病 (LBD) 随着生物标志物的成熟,
该领域正在将这些疾病引起的临床综合征与神经病理学变化区分开来
本身,导致人们对这些疾病产生的疾病的分类系统感到担忧。
认知评估中通常采用的许多测试都是口头的,通常由测试人员实施
检查员向患者提出问题并由患者回答,这些测试通常通过以下方式进行评分。
考官计算正确或错误的答案,并生成一个简单的分数
许多仍在使用的测试是 30 多年前开发的。
人工智能方法的一系列最新进展已经开始使测量和
对录音中捕获的语言和其他认知特征进行分类。
在这里,我们介绍一种新方法来实现这两种可能性。
自然语言处理 (NLP) 和机器学习 (ML) 的发展现已取得
可以自动发现和分类语音样本中可测量的特征。
建立后,这些特征集可以连接到皮质萎缩的分布,从而实现链接
特定认知异常和潜在神经网络之间的这种分析方法。
临床痴呆综合征的诊断可以通过足够多的认知测试来实现
此外,此类分析需要使用最新的语音样本。
生成人工智能模型,称为变压器网络,能够学习独特的
认知障碍或痴呆症患者回答问题的方式
在目标 1 中,我们将研究记忆、执行功能、情感或语言。
用于测量 AD 患者认知异常的无监督人工智能模型,
FTLD 或 DLB 反对传统的临床措施和区域脑萎缩的 MRI 措施。
在目标 2 中,我们将研究无监督人工智能模型的性能
在目标 3 中,我们将 AD、FTLD 和 DLB 患者的认知异常分为几类。
评估 AD、FTLD 和 DLB 认知异常的自动测量的可靠性。
通过对 AD、FTLD 或 DLB 患者的认知进行更细粒度的分析,应该可以
更好地了解这些痴呆症的重叠和分离特征,旨在
改进诊断分类和更好的监测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRADFORD C DICKERSON其他文献
BRADFORD C DICKERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRADFORD C DICKERSON', 18)}}的其他基金
Robust detection of atrophy over short intervals in AD and FTLD
在 AD 和 FTLD 中短时间间隔内对萎缩进行稳健检测
- 批准号:
10633960 - 财政年份:2023
- 资助金额:
$ 20.32万 - 项目类别:
ADRC Consortium for Clarity in ADRD Research Through Imaging
ADRC 联盟通过成像来明确 ADRD 研究
- 批准号:
10803806 - 财政年份:2023
- 资助金额:
$ 20.32万 - 项目类别:
Toward Personalized Prognosis and Outcomes in Primary Progressive Aphasia
原发性进行性失语症的个性化预后和结果
- 批准号:
10634041 - 财政年份:2023
- 资助金额:
$ 20.32万 - 项目类别:
Neuromodulation of brain network function in preclinical and prodromal Alzheimer's Disease
阿尔茨海默病临床前和前驱期脑网络功能的神经调节
- 批准号:
10589289 - 财政年份:2023
- 资助金额:
$ 20.32万 - 项目类别:
Computational psycholinguistic analysis of speech samples in PPA and AD and FTD
PPA、AD 和 FTD 中语音样本的计算心理语言学分析
- 批准号:
10373191 - 财政年份:2022
- 资助金额:
$ 20.32万 - 项目类别:
Computational psycholinguistic analysis of speech samples in PPA and AD and FTD
PPA、AD 和 FTD 中语音样本的计算心理语言学分析
- 批准号:
10563169 - 财政年份:2022
- 资助金额:
$ 20.32万 - 项目类别:
Characterizing sleep brain dynamics associated with Alzheimer's disease pathology and progression in humans using EEG source localization and PET
使用 EEG 源定位和 PET 表征与人类阿尔茨海默病病理学和进展相关的睡眠大脑动力学
- 批准号:
10590969 - 财政年份:2022
- 资助金额:
$ 20.32万 - 项目类别:
Muli-scale Structural Imaging of Alzheimer's Disease Neuropathology and Neurodegeneration
阿尔茨海默病神经病理学和神经变性的多尺度结构成像
- 批准号:
10207104 - 财政年份:2021
- 资助金额:
$ 20.32万 - 项目类别:
Use of machine learning to quantify cognitive function in AD, FTD, and DLB
使用机器学习来量化 AD、FTD 和 DLB 中的认知功能
- 批准号:
10468302 - 财政年份:2021
- 资助金额:
$ 20.32万 - 项目类别:
相似国自然基金
基于全基因组测序和人工智能的SCA3/MJD修饰基因鉴定及疾病预警平台建立
- 批准号:82171254
- 批准年份:2021
- 资助金额:80 万元
- 项目类别:面上项目
多模影像下人工智能综合管理黄斑新生血管性疾病的诊疗
- 批准号:
- 批准年份:2021
- 资助金额:53 万元
- 项目类别:面上项目
人工智能:眼疾病筛查的未来?
- 批准号:
- 批准年份:2020
- 资助金额:14.9 万元
- 项目类别:
基于中文知识图谱的胸部主要疾病人工智能筛查多中心研究
- 批准号:82001809
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于舌诊图像建立病证结合证候诊断及疾病分级的人工智能新方法
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:
10713637 - 财政年份:2023
- 资助金额:
$ 20.32万 - 项目类别:
Artificial Intelligence Applied to Video and Speech for Objectively Evaluating Social Interaction and Depression in Mild Cognitive Impairment
人工智能应用于视频和语音,客观评估轻度认知障碍患者的社交互动和抑郁情况
- 批准号:
10810965 - 财政年份:2023
- 资助金额:
$ 20.32万 - 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
- 批准号:
10821517 - 财政年份:2023
- 资助金额:
$ 20.32万 - 项目类别:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
- 批准号:
10739049 - 财政年份:2023
- 资助金额:
$ 20.32万 - 项目类别:
AI models of multi-omic data integration for ming longevity core signaling pathways
长寿核心信号通路多组学数据整合的人工智能模型
- 批准号:
10745189 - 财政年份:2023
- 资助金额:
$ 20.32万 - 项目类别: