AI models of multi-omic data integration for ming longevity core signaling pathways
长寿核心信号通路多组学数据整合的人工智能模型
基本信息
- 批准号:10745189
- 负责人:
- 金额:$ 46.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAge of OnsetAgingAlzheimer&aposs DiseaseArtificial IntelligenceAutophagocytosisBiological ProcessBrainCardiovascular DiseasesCentenarianChronicChronic Kidney FailureCirrhosisCollaborationsCommunitiesComplexComplex Genetic TraitDataData AnalysesData SetDevelopmentDiabetes MellitusDiseaseDisease ManagementEnvironmentEnvironmental Risk FactorEstrogensEthnic OriginFOXO3A geneFastingGastroenteritisGeneticGenomeGenomicsGoalsHeadHealthHealthcareHeart DiseasesIndividualInflammagingInflammationInsulin ResistanceKidney FailureKnowledgeLife StyleLiver FibrosisLongevityMalignant NeoplasmsMediationMethylationModelingMultiomic DataNamesOrganPharmaceutical PreparationsPharmacogenomicsPhasePhenotypeProcessProteinsProteomeProteomicsProvincePulmonary FibrosisReproducibilityRequest for ApplicationsRiskRisk FactorsSignal PathwaySignal TransductionStomachStressToesVisualX Chromosomeage relatedanalysis pipelineartificial neural networkcohortdata integrationdeep learningdisorder preventiondisorder riskepigenomeexperiencegraph neural networkhealthspanimprovedinterestknowledge graphlarge scale datamachine learning modelmetabolomemetabolomicsmicrobiomemultiple datasetsmultiple omicsnew therapeutic targetnovelopen sourcephenomepreventprotective factorsresponsesexsocial factorstherapeutic targettooltranscriptometranscriptomics
项目摘要
PROJECT SUMMARY
Exceptional longevity (EL) is strongly correlated with exceptional health span, lower risk and delayed onset of
age-related diseases. Moreover, EL is a complex genetic trait, like aging-related diseases, affected by
polygenic targets, and other factors, like sex, ethnicity, lifestyle choices, social and environmental factors.
Thus, in EL studies, single protective genetic targets usually have weaker effects upon survival to extreme age.
Whereas, the right combination of genetic targets, as well as other factors, can have a stronger effect.
Therefore, it is important to discover these protective factors, genetic targets and subsequent signaling
pathways of EL, which are the critical basis to guide the development of novel medications and management
for disease prevention/treatment to extend health and life span. Large-scale and multi-omics datasets, like
genome, epigenome, transcriptome, proteome, metabolome, microbiome, phenome, of large-scale cohorts of
centenarians and exceptional long-lived individuals, have been being generated in multiple EL projects.
Whereas, it remains challenging to integrate and interpret complex multi-omics datasets.
In response to the NIH RFA-AG-23-033, we propose to improve and develop novel artificial intelligence (AI)
models that can efficiently integrate and interpret the EL multi-omics datasets, and identify risk and protective
targets and medications to correct the disease risk signaling pathways for disease prevention and long and
healthy life span extension. Deep learning (DL) and AI models have been widely used in the healthcare field
and outperform traditional machine learning models, and thus offering solutions to this critical problem. We
have rich experience in developing interpretable AI models of multi-omics data analysis for target ranking and
core signaling network inference. In this study, we will (Aim 1) develop two (GNN) AI models, PathFormer and
PathFinder, for unbiased core signaling pathways inference using multi-omics data (unbiased/unguided
inference); (aim 2): develop a novel GNN AI model, modular k-Hop DeepNetFlow, for hypothesis guided core
signaling pathway inference using multi-omics data (semi-guided inference); (Aim 4): develop novel
DeepDrugMap knowledge graph, and Knowledge-driven, Multi-Module, Multi-Evidence (M3E) models to
predict drugs that can boost protective signaling and inhibit the risk signaling pathways for disease
prevention/treatment; develop a novel, open-source visual programming tool, LongevityOmicNet, to support
the dissemination and reproducible analysis of the AI models with diverse supportive datasets, to the broader
EL or aging study community. Also (Aim 3): collaborating with Dr. Michael Province (Co-PI), leading the LLFS
project in WashU, we will apply these AI models to identify EL-associated protective factors, like the Sex,
Genetics, Insulin resistance, Environment factors (SGIE-factors), and associated signaling pathways/biological
processes, using large-scale multi-omics data of EL studies, i.e., LLFS, LG and ILO studies.
项目概要
超长寿命 (EL) 与超常健康寿命、较低风险和延迟发病密切相关
与年龄有关的疾病。此外,EL 是一种复杂的遗传特征,就像与衰老相关的疾病一样,受以下因素影响:
多基因目标以及其他因素,如性别、种族、生活方式选择、社会和环境因素。
因此,在 EL 研究中,单一的保护性遗传目标通常对极端年龄的生存影响较弱。
然而,遗传目标以及其他因素的正确组合可以产生更强的效果。
因此,发现这些保护因素、遗传靶标和后续信号传导非常重要
EL途径,是指导新药开发和管理的重要基础
用于疾病预防/治疗以延长健康和寿命。大规模和多组学数据集,例如
大规模群体的基因组、表观基因组、转录组、蛋白质组、代谢组、微生物组、表型组
多个 EL 项目不断涌现出百岁老人和杰出的长寿人士。
然而,整合和解释复杂的多组学数据集仍然具有挑战性。
为了响应 NIH RFA-AG-23-033,我们建议改进和开发新型人工智能 (AI)
可以有效集成和解释 EL 多组学数据集并识别风险和保护的模型
纠正疾病风险信号通路的目标和药物,以预防疾病和长期治疗
健康寿命延长。深度学习(DL)和AI模型已广泛应用于医疗保健领域
并超越传统的机器学习模型,从而为这一关键问题提供解决方案。我们
在开发用于目标排序的多组学数据分析的可解释人工智能模型方面拥有丰富的经验
核心信令网络推理。在本研究中,我们将(目标 1)开发两种(GNN)AI 模型:PathFormer 和
PathFinder,用于使用多组学数据进行无偏核心信号通路推断(无偏/无引导
推理); (目标 2):开发一种新颖的 GNN AI 模型,模块化 k-Hop DeepNetFlow,用于假设引导核心
使用多组学数据进行信号通路推断(半引导推断); (目标 4):开发小说
DeepDrugMap 知识图谱和知识驱动、多模块、多证据 (M3E) 模型
预测可以增强保护性信号传导并抑制疾病风险信号传导途径的药物
预防/治疗;开发一种新颖的开源可视化编程工具 LongevityOmicNet,以支持
具有不同支持数据集的人工智能模型的传播和可重复分析,以更广泛的方式
EL 或老龄化研究社区。另外(目标 3):与 Michael Province 博士(Co-PI)合作,领导 LLFS
在华盛顿大学的项目中,我们将应用这些人工智能模型来识别与 EL 相关的保护因素,例如性别、
遗传学、胰岛素抵抗、环境因素(SGIE 因素)和相关信号传导途径/生物
过程,使用 EL 研究的大规模多组学数据,即 LLFS、LG 和 ILO 研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fuhai Li其他文献
Fuhai Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fuhai Li', 18)}}的其他基金
Modeling and targeting tumor-immune signaling interactions in tumor microenvironment
肿瘤微环境中肿瘤免疫信号相互作用的建模和靶向
- 批准号:
10659993 - 财政年份:2023
- 资助金额:
$ 46.07万 - 项目类别:
Combine Genomics and Symptoms Data Driven Models to Discover Synergistic Combinatory Therapies for Alzheimer's Disease
结合基因组学和症状数据驱动模型来发现阿尔茨海默病的协同组合疗法
- 批准号:
10228346 - 财政年份:2020
- 资助金额:
$ 46.07万 - 项目类别:
Combine Genomics and Symptoms Data Driven Models to Discover Synergistic Combinatory Therapies for Alzheimer's Disease
结合基因组学和症状数据驱动模型来发现阿尔茨海默病的协同组合疗法
- 批准号:
10254376 - 财政年份:2020
- 资助金额:
$ 46.07万 - 项目类别:
相似国自然基金
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
晶状体mtDNA氧化损伤修复与线粒体自噬的空间差异及其调控干预在年龄相关性白内障发病中的作用
- 批准号:82171038
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
FoxO3a通路抑制在年龄相关性白内障发病机制中的调控作用
- 批准号:82070942
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
ODRP泛素化经LECs外泌体释放和自噬降解调控年龄相关性白内障的发病
- 批准号:81974129
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
肠道微生态参与年龄相关性黄斑变性的发病机制及固本清目方的干预作用
- 批准号:81973912
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Development of CM-CS1 CAR Treg to Treat Amyotrophic Lateral Sclerosis (ALS)
开发 CM-CS1 CAR Treg 治疗肌萎缩侧索硬化症 (ALS)
- 批准号:
10696512 - 财政年份:2023
- 资助金额:
$ 46.07万 - 项目类别:
Neuronal ABCA7 loss of function and Alzheimer’s disease
神经元 ABCA7 功能丧失与阿尔茨海默病
- 批准号:
10629715 - 财政年份:2023
- 资助金额:
$ 46.07万 - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 46.07万 - 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 46.07万 - 项目类别: