Three-Dimensional (3D) Acoustofluidic Scanning Nanoscope with Super Resolution and Large Field of View

具有超分辨率和大视场的三维 (3D) 声流控扫描纳米镜

基本信息

  • 批准号:
    10278520
  • 负责人:
  • 金额:
    $ 38.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Over the past two decades, a number of “super-resolution” 3D imaging technologies have been developed, enabling researchers to observe nanoscale biological structures that were previously invisible to traditional, diffraction-limited imaging techniques. The ability to visualize cellular and subcellular structures at the nanoscale has revealed key insights into a variety of biological processes. Although impressive progress has been made in the development of 3D super-resolution imaging techniques, researchers are often forced to accept a tradeoff in terms of the resolution, field-of-view, speed, and ease of use of their 3D imaging technique. Recently, we have developed an acoustofluidic scanning nanoscope that can simultaneously achieve both super-resolution and large field-of-view imaging in 2D. In this R01 project, we will develop and validate a 3D acoustofluidic scanning nanoscope with the following features: (1) Super-resolution imaging with lateral and axial resolutions of ~50 nm and ~120 nm, respectively: The proposed 3D imaging method will achieve a resolution that is four times better than that from a confocal microscope, which makes the optical imaging of more detailed inner architecture of many subcellular structures possible; (2) Large field-of-view (~1,100×1,100 µm2): Conventional optical imaging methods achieve high-throughput imaging at the cost of reduced resolution and vice versa. By utilizing acoustics to simultaneously manipulate multiple microsphere lenses, the proposed imaging method will solve this long-standing technical barrier for large field-of-view imaging while maintaining superior lateral and axial resolution; (3) Imaging speed 10 times faster than that from a confocal microscope: Rapid z-stacking at a speed 10 times faster than that of a confocal microscope can be achieved by using surface acoustic waves to scan an array of microspheres across the sample volume in a precise, controllable manner; (4) Seamless connection to a conventional optical microscope for ease of use: Our device can be seamlessly connected to a conventional optical microscope without modification of the optical setup, which can significantly reduce the cost and the complexity of operation. With the aforementioned advantages, the proposed 3D acoustofluidic scanning nanoscope technology has the potential to significantly exceed current standards in the field and address many unmet needs. We will validate its performance by imaging 3D nanorod samples and the organelles of live HeLa cells. In this regard, we aim to demonstrate the far-reaching potential of our 3D acoustofluidic scanning nanoscope technology to enable improved research in areas ranging from subcellular imaging to the visualization of 3D neural activity.
项目摘要 在过去的二十年中,已经开发了许多“超分辨率” 3D成像技术 使研究人员能够观察纳米级生物结构,这些结构以前是传统的, 衍射受限的成像技术。能够可视化纳米级的细胞和亚细胞结构的能力 已经揭示了对各种生物过程的关键见解。尽管取得了令人印象深刻的进展 在开发3D超分辨率成像技术时,研究人员经常被迫接受权衡 就其3D成像技术的分辨率,视野,速度和易用性而言。最近,我们有 开发了一种声液扫描纳米镜,可以轻松实现超分辨率和 2D中的大型视野成像。在这个R01项目中,我们将开发和验证3D声学扫描 纳米镜具有以下特征:(1)横向和轴向分辨率约50的超分辨率成像 NM和〜120 nm:提出的3D成像方法将达到四倍的分辨率 比共聚焦显微镜更好,这使得更详细的内部体系结构的光学成像 许多亚细胞结构可能; (2)大型视野(〜1,100×1,100 µm2):常规光学 成像方法以减少分辨率成本实现高通量成像,反之亦然。通过使用 声学要简单地操纵多个微球镜头,提出的成像方法将解决 这种长期存在的技术障碍,用于大型视野成像,同时保持横向和轴向优势 解决; (3)成像速度比共聚焦显微镜快10倍:快速z堆叠 速度比共聚焦显微镜快10倍,可以通过使用表面声波到 以精确的,受控的方式扫描样品体积上的微球阵列; (4)无缝 连接到常规光学显微镜以易于使用:我们的设备可以无缝连接 进行常规的光学显微镜,而无需修改光学设置,这可以显着降低 成本和操作的复杂性。具有近似优点,提出的3D声流体 扫描纳米镜技术有可能显着超过该领域的当前标准 满足许多未满足的需求。我们将通过成像3D纳米棒样品和细胞器来验证其性能 活的HeLa细胞。在这方面,我们旨在展示3D声流体的深远潜力 扫描纳米镜技术,以改善从亚细胞成像到 3D神经活动的可视化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chenglong Zhao其他文献

Chenglong Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chenglong Zhao', 18)}}的其他基金

Three-Dimensional (3D) Acoustofluidic Scanning Nanoscope with Super Resolution and Large Field of View
具有超分辨率和大视场的三维 (3D) 声流控扫描纳米镜
  • 批准号:
    10478216
  • 财政年份:
    2021
  • 资助金额:
    $ 38.12万
  • 项目类别:

相似国自然基金

基于声学原位测试的金属表面液滴弹跳次数仿生调控
  • 批准号:
    52350039
  • 批准年份:
    2023
  • 资助金额:
    80 万元
  • 项目类别:
    专项基金项目
航天低温推进剂加注系统气液状态声学监测技术研究
  • 批准号:
    62373276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
  • 批准号:
    82302874
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
  • 批准号:
    12374418
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
海洋声学功能材料发展战略研究
  • 批准号:
    52342304
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    专项项目

相似海外基金

Advancing Photoacoustic Tomography in breast imaging to predict response in breast cancers treated with neoadjuvant therapy
推进乳腺成像中的光声断层扫描以预测新辅助治疗乳腺癌的反应
  • 批准号:
    10715163
  • 财政年份:
    2023
  • 资助金额:
    $ 38.12万
  • 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
  • 批准号:
    10666001
  • 财政年份:
    2023
  • 资助金额:
    $ 38.12万
  • 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
  • 批准号:
    10761587
  • 财政年份:
    2023
  • 资助金额:
    $ 38.12万
  • 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
  • 批准号:
    10737308
  • 财政年份:
    2023
  • 资助金额:
    $ 38.12万
  • 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
  • 批准号:
    10589666
  • 财政年份:
    2023
  • 资助金额:
    $ 38.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了