Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
基本信息
- 批准号:10589666
- 负责人:
- 金额:$ 19.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-11 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAffectAlgorithmsAmericanApplications GrantsAwardBackBladderClinical TrialsCollaborationsComplexControl GroupsCutaneousDataDepositionDevicesEducational workshopElementsEmergency department visitEventFamily suidaeFeedbackForcepFrequenciesFundingFutureGeometryGlassGoalsGrowthHeterogeneityHistologicHospitalizationHumanImageImplantIn VitroInjuryInterventionInvestigationKidneyKidney CalculiKnowledgeLaboratoriesLengthLithotripsyMeasurementMeasuresMechanicsMentorsMethodsModelingMotionOperative Surgical ProceduresPatientsPelvisPhasePhysicsPhysiologic pulsePositioning AttributeProtocols documentationRadiationRecurrenceRenal pelvisResearchResearch PersonnelResearch ProposalsResidual stateRotationSafetyShapesShockSignal TransductionSurfaceSymptomsSystemTechniquesTechnologyTestingTimeTissuesTransducersTranslational ResearchUltrasonic waveUltrasonicsUreterUreteroscopyUrinary tractUrineUrologic DiseasesVisualizationarmcareercareer developmentclinical implementationcommon treatmentcostefficacy evaluationimprovedin vivoindexingindustry partnernovel strategiesobject shapeparticleporcine modelpredictive modelingpressurerandomized, controlled studyreduce symptomsresponsible research conductsuccesssymposiumtechnology developmenttissue injurytissue phantomtreatment armtwo-dimensionalultrasound
项目摘要
Project Summary/Abstract
Kidney stones are prevalent and one of the costliest urologic diseases. The available treatment options
such as ureteroscopy or shockwave wave lithotripsy break the stone into small fragments that can lead to future
growth and recurrence of symptoms. This proposal investigates the underlying mechanisms to use acoustic
radiation force produced by an ultrasound multi-element array that can trap a stone, steer it out of the kidney
collecting space, and deposit it in the renal pelvis or UPJ to facilitate its natural clearance. The project seeks to
answer the fundamental scientific hurdles to target and maneuver the stone toward passage.
Aim 1 develops the analytical framework to optimize pulsing mechanisms to trap and manipulate natural
stones. A proposed semi-analytical approach approximates the scattering with spherical functions to calculate
the forces on natural stones. Predictions will be combined with the investigation of pulsing parameters to optimize
trap robustness and achieve stable trapping of natural stones. Pulsing parameters such as pulse length,
repetition rate, frequency, and phase excitation that control beam shape and uniformity will be adjusted to
eliminate instabilities from rotation and asymmetric forces to achieve stable trapping of natural stones. The aim
success is measured by performing manipulation maneuver natural stones along predetermined paths.
In Aim 2, the stone acts as a target that can reflect and scatter ultrasound waves which are received back
by the multi-element array. Correction algorithms use the received signal to calculate the element excitations
necessary to correct for beam aberrations from the tissue heterogeneity. Hydrophone measurements will
compare the beams before and after corrections with the unaberrated beam. Finally, manipulation of stones in
kidney phantoms and ex vivo are performed to mimic in vivo conditions.
In Aim 3, the safety and efficacy of acoustic forceps manipulation will be evaluated. First, different
acoustic intensity exposures will be investigated in ex vivo porcine kidneys for thermal and mechanical injury.
Afterward, natural stones of various sizes will be implemented in the kidney collecting space of live pigs. The
stone will be targeted, trapped, and steered from the kidney collecting space toward the kidney exit using the
acoustic forceps. The treated group will be evaluated against an untreated control group to evaluate efficacy.
Tissue injury mechanisms will be assessed through histological analysis.
In addition to my research, I will also pursue other activities guided by my mentors toward my career goal
of becoming an independent investigator. These activities include interacting with researchers, industry partners,
and clinicians through seminars and conferences; and participating in workshops on the responsible conduct of
research, and grant proposals and management so that I will be able to pursue independent R-level funding
toward the end of the K25 award. The Applied Physics Laboratory offers the facilities and inter-departmental
collaboration necessary for successful career development in translational research.
项目摘要/摘要
肾结石很普遍,是最昂贵的泌尿科疾病之一。可用的治疗选择
例如输尿管镜检查或冲击波波碎石术将石头碎成小碎片,可能导致未来
症状的生长和复发。该提案调查了使用声学的基本机制
超声多元素阵列产生的辐射力可以捕获石头,将其从肾脏中挖出
收集空间,并将其存放在肾脏骨盆或UPJ中,以促进其自然间隙。该项目试图
回答基本的科学障碍,以瞄准并操纵石头通向通道。
AIM 1开发了分析框架,以优化脉冲机制以捕获和操纵自然
石头。提出的半分析方法近似于球形函数的散射以计算
天然石头的力量。预测将与脉冲参数的研究结合使用以优化
捕获稳健性并实现天然石头的稳定捕获。脉冲参数,例如脉冲长度,
控制光束形状和均匀性的重复率,频率和相激发将被调整为
消除旋转和不对称力的不稳定性,以实现天然石头的稳定捕获。目的
通过沿预先确定的路径进行操作操纵天然石头来衡量成功。
在AIM 2中,石头充当可以反射和散射收到的超声波的目标
由多元素阵列。校正算法使用接收的信号来计算元素激发
需要校正组织异质性的光束像差所必需的。水文测量将
比较校正前后的光束与未取消的光束。最后,操纵石头
进行肾脏幻像和外体内以模仿体内条件。
在AIM 3中,将评估声镊子操纵的安全性和功效。首先,不同
在体内猪肾脏中将研究声强度暴露,以进行热和机械损伤。
之后,将在活猪的肾脏收集空间中实现各种尺寸的天然石头。这
石头将被针对,被困和从肾脏收集空间朝向肾脏出口
声镊。治疗组将针对未经处理的对照组进行评估以评估疗效。
组织损伤机制将通过组织学分析评估。
除了我的研究之外,我还将从我的职业目标进行其他活动中进行其他活动
成为独立调查员。这些活动包括与研究人员,行业合作伙伴互动,
和临床医生通过研讨会和会议;并参加有关负责任的讲习班
研究,并授予建议和管理,以便我能够寻求独立的R级资助
在K25奖的结束时。应用物理实验室提供设施和部门间
在转化研究中成功发展职业发展所必需的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohamed A Ghanem其他文献
Mohamed A Ghanem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Advancing Photoacoustic Tomography in breast imaging to predict response in breast cancers treated with neoadjuvant therapy
推进乳腺成像中的光声断层扫描以预测新辅助治疗乳腺癌的反应
- 批准号:
10715163 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
- 批准号:
10666001 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
Maps as a service: A systematic approach to the production of tactile and audio/vibrational maps for visually impaired users
地图即服务:为视障用户制作触觉和音频/振动地图的系统方法
- 批准号:
10720207 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别: