A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
基本信息
- 批准号:10209183
- 负责人:
- 金额:$ 51.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-12-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAdoptedAffectAgingAirAir MovementsAmericanAnimal ModelApoptosisArchitectureBasement membraneBiochemicalBiologyBiomechanicsBiophysicsCell modelCellsCellular MorphologyChemical ExposureChemicalsChimeric ProteinsCicatrixClinicalCommunitiesConnective TissueConsensusCuesCustomDataDecision MakingDepositionDevelopmentDiseaseEngineeringEpithelialEpithelial CellsExtracellular MatrixFGF2 geneFibrinogenFibroblastsFibrosisFunctional disorderFutureGene ExpressionGrowth FactorHealthHumanHydrogelsIn SituIn VitroInterventionLamina PropriaLarynxLigationLungMechanical StressMechanicsMesenchymalMesenchymal Stem CellsMethodologyMethodsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMonitorMotionMultipotent Stem CellsMuscleMyofibroblastOperative Surgical ProceduresOrganParentsPathologicPermeabilityPharmaceutical PreparationsPharmacologyPharmacotherapyPhenotypePhonationPhysiologicalPhysiologyPliabilityPredispositionProcessPropertyProtein KinaseResearchSideSignal TransductionStratified EpitheliumStratified Squamous EpitheliumStructureTGFB1 geneTestingTherapeuticTissue MicroarrayTissue ModelTissuesTracheaTreatment EfficacyVoicebasecohesioncytokinedesignefficacious treatmentepithelial injuryfasudilfibrogenesisfundamental researchgraphenehealinghuman tissueimprovedinduced pluripotent stem cellinhibitor/antagonistinterfacialinterstitialmechanical propertiesmimeticsminiaturizepreventreal time monitoringrepairedrhosensorsoundspatiotemporaltissue injuryvocal cordvocalis musclewound healing
项目摘要
Project Summary
Voice is produced when the vocal folds are driven into a wave-like motion by the airstream from the trachea,
converting aerodynamic energy and airflow into acoustic energy in the form of sound. Each vocal fold consists
of a pliable vibratory layer of connective tissue, known as the lamina propria (LP), sandwiched between a muscle
and a stratified squamous epithelium (EP). Numerous environmental, mechanical and pathological factors can
damage this delicate tissue, resulting in vocal fold scarring that affects millions of Americans with limited
treatment options. Although there is a general consensus on the pathophysiology of vocal fold scarring, the
molecular and cellular mechanisms that control unremitting fibrosis remain poorly understood. Studies on other
fibrotic diseases suggest that fibroblasts, epithelial cells and the interstitial matrix are active players in
fibrogenesis. This project aims to engineer a reliable, physiologically relevant in vitro tissue model that can be
used to investigate vocal fold development, health, and disease, and more importantly, to facilitate the
development and testing of new treatment options. We propose to develop a microengineered organ chip that
integrates the epithelial and mesenchymal cells in a tissue-mimetic configuration with built-in airflow to stimulate
phonation. Using the microfluidic model, we will investigate how damage to the epithelium initiates fibrosis, how
the fibrotic extracellular matrix (ECM) sustains fibrosis and how myofibroblast proliferation and matrix deposition
continue unabated. Finally, we will calibrate our model with an antifibrotic growth factor that has shown efficacy
in treating vocal fold scarring, and test a promising pharmacological inhibitor that has not been previously tested
in the context of vocal fold scarring. Highly efficient bioorthogonal tetrazine ligation will be used to establish the
initial LP matrix surrounding healthy fibroblasts and to introduce compositional and mechanical alterations that
promote fibroblast activation. Pluripotent and multipotent stem cells will be guided to differentiate into vocal fold-
like epithelial cells and fibroblasts by adopting a development paradigm and through systematic manipulation of
the engineered microenvironment. Piezoresistive strain sensors embedded in the sidewalls of the microfluidic
channels will be used to monitor tissue stiffness and EP permeability in situ. The microengineered tissue model
will be characterized in terms of cell phenotype, microstructure, mechanical properties and physiological function.
For comparison purposes, a stand-alone, human-sized vocal fold model will be developed and characterized
employing methodologies established in the laryngology field. Data generated from this project should
significantly impact fundamental research related to vocal fold scarring and provide critical information on
therapeutic decision-making in the near future.
项目摘要
当声带被气流从气流中驱动到波浪状的运动中时,会产生声音,
以声音形式将空气动力和气流转化为声能。每个人声折叠都是
夹在肌肉之间
和分层的鳞状上皮(EP)。许多环境,机械和病理因素可以
损坏这种精致的组织,导致声带疤痕,影响数百万的美国人
治疗选择。尽管关于声带疤痕的病理生理学有一个普遍的共识,但
控制无纤维化的分子和细胞机制仍然了解不足。对他人的研究
纤维化疾病表明成纤维细胞,上皮细胞和间质基质是活跃的参与者
纤维发生。该项目旨在设计一个可靠的,生理上相关的体外组织模型
用于调查声带的发展,健康和疾病,更重要的是,以促进
开发和测试新治疗方案。我们建议开发一个微工具的器官芯片
与内置的气流中整合组织模拟构型中的上皮和间质细胞以刺激
发声。使用微流体模型,我们将研究上皮的损害如何启动纤维化,如何
纤维化细胞外基质(ECM)维持纤维化以及肌纤维细胞增殖和基质沉积
继续没有减弱。最后,我们将用抗纤维化生长因子校准模型,该模型已显示出功效
在治疗声带疤痕和测试有希望的药理学抑制剂时,该抑制剂以前尚未进行过测试
在人声折叠的背景下。高效的生物方向双嗪结扎将用于建立
围绕健康成纤维细胞的初始LP基质,并引入组成和机械改变,
促进成纤维细胞激活。多能和多能干细胞将被引导分化为声带 -
像上皮细胞和成纤维细胞一样,通过采用开发范式并通过系统地操纵
工程的微环境。嵌入微流体侧壁中的压电应变传感器
通道将用于监测组织刚度和原位EP渗透性。微工程组织模型
将以细胞表型,微结构,机械性能和生理功能来表征。
为了进行比较,将开发和表征一个独立的人尺寸的人声折叠模型
采用在喉科领域建立的方法。该项目产生的数据应该
显着影响与声带疤痕有关的基本研究,并提供有关的关键信息
在不久的将来的治疗决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinqiao Jia其他文献
Xinqiao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinqiao Jia', 18)}}的其他基金
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10400243 - 财政年份:2021
- 资助金额:
$ 51.15万 - 项目类别:
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10546502 - 财政年份:2021
- 资助金额:
$ 51.15万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9028226 - 财政年份:2015
- 资助金额:
$ 51.15万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10604269 - 财政年份:2015
- 资助金额:
$ 51.15万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10394924 - 财政年份:2015
- 资助金额:
$ 51.15万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9193072 - 财政年份:2015
- 资助金额:
$ 51.15万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8360585 - 财政年份:2011
- 资助金额:
$ 51.15万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8168491 - 财政年份:2010
- 资助金额:
$ 51.15万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
- 批准号:
10659299 - 财政年份:2023
- 资助金额:
$ 51.15万 - 项目类别:
Understanding the effects of listening effort on sentence processing and memory in sensorineural hearing loss: Evidence from simultaneous electrophysiology and pupillometry
了解听力努力对感音神经性听力损失的句子处理和记忆的影响:来自同步电生理学和瞳孔测量的证据
- 批准号:
10523120 - 财政年份:2021
- 资助金额:
$ 51.15万 - 项目类别:
Speech Intervention via Telepractice for Children with Repaired Cleft Palate : Randomized Controlled Trial and Assessment of Speech Production and Perception Skills
通过远程练习对腭裂修复儿童进行言语干预:言语产生和感知技能的随机对照试验和评估
- 批准号:
10280767 - 财政年份:2021
- 资助金额:
$ 51.15万 - 项目类别: