Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
基本信息
- 批准号:10546502
- 负责人:
- 金额:$ 45.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationAcetylcholineAcinar CellAcinus organ componentAffectAlkenesAnimal ModelArchitectureBasement membraneBedsBiochemicalBiological MarkersBiomechanicsBiomedical EngineeringBlood VesselsBody Weight decreasedCalciumCancer PatientCarbacholCell CommunicationCell Differentiation processCell LineageCell PolarityCellsCellular SpheroidsChemicalsCoculture TechniquesComplexCuesDeglutitionDentalDevelopmentDuct (organ) structureDuctal Epithelial CellEatingEncapsulatedEndothelial CellsEndotheliumEngineeringEnvironmentEpitheliumExhibitsExtracellular MatrixFosteringGelGene Expression ProfileGeometryGlandGoalsGrowthGrowth FactorHead and Neck CancerHeterogeneityHomeostasisHumanHuman EngineeringHydrogelsImmunocompetentImplantIn VitroIntraperitoneal InjectionsInvestigationLigationMaintenanceMeasuresMediatingMesenchymalMesenchymal Stem CellsMethodsMorphogenesisMorphologyMyoepithelial cellNatural regenerationNerveNeuronsNeurotransmittersNude RatsOralOral cavityOrganOutcome MeasureParotid GlandPatientsPeptide HydrolasesPeptidesPhenotypePilocarpinePropertyProteomicsQuality of lifeRadiation therapyRattusReactionResectedSalivaSalivarySalivary Gland TissueSalivary GlandsSalivary duct structureSepharoseShapesSignal TransductionStructureSymptomsTissue EngineeringTissue ExpansionTissuesTreatment EfficacyTreesVascularizationWorkXerostomiaalternative treatmentanalogbiomaterial compatibilitycell motilitycycloadditionhead and neck cancer patienthydrogel scaffoldimplantationin vivoinnovationinterfacialinterstitialmechanical signalmimeticsmorphogensnerve supplyneuralneurotrophic factorneurturinpolarized cellprogenitorreconstitutionrecruitregeneration potentialresponserestorationside effectstemstem cellssubcutaneoustranscriptometranscriptome sequencingtransplant modeltreatment strategy
项目摘要
Project Summary
Despite advances in treatment strategies, xerostomia (or dry mouth) remains a permanent and devastating side
effect of radiotherapy for head and neck cancers, reducing the quality of life for ~50,000 cancer patients each
year in the U.S. We aim to develop tissue-engineering approaches to restore salivary function. We have isolated
human salivary gland stem/progenitor cells (hS/PCs) from patients prior to radiotherapy. We have created
tunable hydrogel matrices that maintain the progenitor status, induce lineage-specific differentiation and promote
the development of organized multicellular spheroids from dispersed hS/PCs. Separately, we have engineered
salivary gland microtissues that exhibit coordinated calcium activation between hS/PC-derived acini-like core
and the surrounding myoepithelial cells. However, a functional gland with extensive branching, polarized acini,
and interconnected ducts has not yet been realized. Here, we propose a bottom-up approach to establish
functional salivary glands using multicellular assemblies of defined shape, geometry and composition. We will
synthesize hydrogel scaffolds that recapitulate key features of the basement membrane and the interstitial matrix
in the developing organ. We will reconstitute the vascular, neural and mesenchymal components in the
engineered environment to foster tissue morphogenesis in vitro and to maintain tissue homeostasis in vivo. In
Aim 1, we will exploit tetrazine ligation, the bioorthogonal and highly efficient cycloaddition reaction between s-
tetrazine and strained alkenes, for the establishment of cell-instructive matrices. We will adapt our established
methods to generate microgels containing sequestered acetylcholine analog, carbachol (CCh). In Aim 2, we will
employ non-adhesive hydrogel microwells to produce multicellular epithelial assemblies consisting of hS/PCs
and CCh depots. The resultant microtissue will be encased in a synthetic basement membrane with bioactive
peptides to stimulate the development of proacrinar progenitor phenotype. We will generate endothelial
microtissues consisting of a core of human salivary gland endothelial cells (hSECs) and a shell of human
mesenchymal stem cells (hMSCs). We will co-culture the epithelial and endothelial microtissues in a synthetic
extracellular matrix with defined cell-guidance cues to aid in the establishment of a hierarchically integrated
tissue assembly. In Aim 3, the engineered gland with integrated microvasculature and conjugated neurotrophic
factor, neurturin, will be implanted in the resected parotid bed of athymic rats. Enzymatically triggered release of
neurturin will promote implant innervation. Tissue ultrastructure, biomarker expression, gland morphology,
biointegration and function will be assessed under various construct configurations. We will interrogate how the
engineered microenvironments stimulate differentiation, trigger polarization and promote branching. The overall
hypothesis is that hS/PCs co-cultured with hSECs/hMSCs in 3D synthetic matrices displaying biochemical,
geometrical and mechanical cues identified from the native organs will assemble into functional salivary tissues.
Our investigations will help define bioengineering approaches toward the management of xerostomia.
项目概要
尽管治疗策略取得了进步,口干症(或口干症)仍然是一个永久性的、具有破坏性的问题
放射治疗对头颈癌的影响,降低了约 50,000 名癌症患者的生活质量
在美国,我们的目标是开发组织工程方法来恢复唾液功能。我们已经隔离了
放疗前取自患者的人类唾液腺干/祖细胞 (hS/PC)。我们已经创建了
可调节的水凝胶基质可维持祖细胞状态,诱导谱系特异性分化并促进
从分散的 hS/PC 发展有组织的多细胞球体。我们分别设计了
唾液腺微组织在 hS/PC 衍生的腺泡样核心之间表现出协调的钙激活
以及周围的肌上皮细胞。然而,具有广泛分支、极化腺泡的功能性腺体,
和互连管道尚未实现。在这里,我们提出一种自下而上的方法来建立
使用具有确定形状、几何形状和成分的多细胞组件来实现功能性唾液腺。我们将
合成水凝胶支架,概括基底膜和间质基质的关键特征
在发育中的器官中。我们将重建血管、神经和间质成分
工程化环境可促进体外组织形态发生并维持体内组织稳态。在
目标 1,我们将利用四嗪连接,即 s- 之间的生物正交高效环加成反应
四嗪和应变烯烃,用于建立细胞指导基质。我们将调整我们既定的
产生含有螯合乙酰胆碱类似物卡巴胆碱(CCh)的微凝胶的方法。在目标 2 中,我们将
采用非粘附性水凝胶微孔生产由 hS/PC 组成的多细胞上皮组件
和 CCh 仓库。由此产生的微组织将被包裹在具有生物活性的合成基底膜中
刺激前腺祖细胞表型发育的肽。我们将产生内皮细胞
由人唾液腺内皮细胞 (hSEC) 核心和人唾液腺内皮细胞外壳组成的微组织
间充质干细胞(hMSC)。我们将在合成的培养皿中共培养上皮和内皮微组织
具有明确的细胞引导线索的细胞外基质,有助于建立分层整合的细胞外基质
组织组装。在目标 3 中,工程化腺体具有集成的微脉管系统和共轭神经营养物质
神经营养因子将被植入无胸腺大鼠切除的腮腺床中。酶促释放
neurturin 将促进种植体神经支配。组织超微结构、生物标志物表达、腺体形态、
将在各种构建配置下评估生物整合和功能。我们将询问如何
工程微环境刺激分化、引发极化并促进分支。整体
假设 hS/PC 与 hSEC/hMSC 在 3D 合成基质中共培养,显示生化、
从天然器官中识别出的几何和机械线索将组装成功能性唾液组织。
我们的研究将有助于定义治疗口干症的生物工程方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinqiao Jia其他文献
Xinqiao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinqiao Jia', 18)}}的其他基金
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10400243 - 财政年份:2021
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9028226 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10604269 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10209183 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10394924 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9193072 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8360585 - 财政年份:2011
- 资助金额:
$ 45.81万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8168491 - 财政年份:2010
- 资助金额:
$ 45.81万 - 项目类别:
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
- 批准号:82302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Insights into Coronary Microvascular Dysfunction in Diabetic Cardiomyopathy
糖尿病心肌病冠状动脉微血管功能障碍的见解
- 批准号:
10657041 - 财政年份:2023
- 资助金额:
$ 45.81万 - 项目类别:
Molecular mechanism of neuronal control in sweat gland development
神经元控制汗腺发育的分子机制
- 批准号:
10928886 - 财政年份:2023
- 资助金额:
$ 45.81万 - 项目类别:
Insights into Coronary Microvascular Dysfunction in Diabetic Cardiomyopathy
糖尿病心肌病冠状动脉微血管功能障碍的见解
- 批准号:
10705359 - 财政年份:2022
- 资助金额:
$ 45.81万 - 项目类别:
Role of Sympathetic Innervation in Islet Plasticity during Pregnancy.
交感神经支配在怀孕期间胰岛可塑性中的作用。
- 批准号:
10388837 - 财政年份:2022
- 资助金额:
$ 45.81万 - 项目类别:
Role of Sympathetic Innervation in Islet Plasticity during Pregnancy.
交感神经支配在怀孕期间胰岛可塑性中的作用。
- 批准号:
10565670 - 财政年份:2022
- 资助金额:
$ 45.81万 - 项目类别: