Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
基本信息
- 批准号:10546502
- 负责人:
- 金额:$ 45.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationAcetylcholineAcinar CellAcinus organ componentAffectAlkenesAnimal ModelArchitectureBasement membraneBedsBiochemicalBiological MarkersBiomechanicsBiomedical EngineeringBlood VesselsBody Weight decreasedCalciumCancer PatientCarbacholCell CommunicationCell Differentiation processCell LineageCell PolarityCellsCellular SpheroidsChemicalsCoculture TechniquesComplexCuesDeglutitionDentalDevelopmentDuct (organ) structureDuctal Epithelial CellEatingEncapsulatedEndothelial CellsEndotheliumEngineeringEnvironmentEpitheliumExhibitsExtracellular MatrixFosteringGelGene Expression ProfileGeometryGlandGoalsGrowthGrowth FactorHead and Neck CancerHeterogeneityHomeostasisHumanHuman EngineeringHydrogelsImmunocompetentImplantIn VitroIntraperitoneal InjectionsInvestigationLigationMaintenanceMeasuresMediatingMesenchymalMesenchymal Stem CellsMethodsMorphogenesisMorphologyMyoepithelial cellNatural regenerationNerveNeuronsNeurotransmittersNude RatsOralOral cavityOrganOutcome MeasureParotid GlandPatientsPeptide HydrolasesPeptidesPhenotypePilocarpinePropertyProteomicsQuality of lifeRadiation therapyRattusReactionResectedSalivaSalivarySalivary Gland TissueSalivary GlandsSalivary duct structureSepharoseShapesSignal TransductionStructureSymptomsTissue EngineeringTissue ExpansionTissuesTreatment EfficacyTreesVascularizationWorkXerostomiaalternative treatmentanalogbiomaterial compatibilitycell motilitycycloadditionhead and neck cancer patienthydrogel scaffoldimplantationin vivoinnovationinterfacialinterstitialmechanical signalmimeticsmorphogensnerve supplyneuralneurotrophic factorneurturinpolarized cellprogenitorreconstitutionrecruitregeneration potentialresponserestorationside effectstemstem cellssubcutaneoustranscriptometranscriptome sequencingtransplant modeltreatment strategy
项目摘要
Project Summary
Despite advances in treatment strategies, xerostomia (or dry mouth) remains a permanent and devastating side
effect of radiotherapy for head and neck cancers, reducing the quality of life for ~50,000 cancer patients each
year in the U.S. We aim to develop tissue-engineering approaches to restore salivary function. We have isolated
human salivary gland stem/progenitor cells (hS/PCs) from patients prior to radiotherapy. We have created
tunable hydrogel matrices that maintain the progenitor status, induce lineage-specific differentiation and promote
the development of organized multicellular spheroids from dispersed hS/PCs. Separately, we have engineered
salivary gland microtissues that exhibit coordinated calcium activation between hS/PC-derived acini-like core
and the surrounding myoepithelial cells. However, a functional gland with extensive branching, polarized acini,
and interconnected ducts has not yet been realized. Here, we propose a bottom-up approach to establish
functional salivary glands using multicellular assemblies of defined shape, geometry and composition. We will
synthesize hydrogel scaffolds that recapitulate key features of the basement membrane and the interstitial matrix
in the developing organ. We will reconstitute the vascular, neural and mesenchymal components in the
engineered environment to foster tissue morphogenesis in vitro and to maintain tissue homeostasis in vivo. In
Aim 1, we will exploit tetrazine ligation, the bioorthogonal and highly efficient cycloaddition reaction between s-
tetrazine and strained alkenes, for the establishment of cell-instructive matrices. We will adapt our established
methods to generate microgels containing sequestered acetylcholine analog, carbachol (CCh). In Aim 2, we will
employ non-adhesive hydrogel microwells to produce multicellular epithelial assemblies consisting of hS/PCs
and CCh depots. The resultant microtissue will be encased in a synthetic basement membrane with bioactive
peptides to stimulate the development of proacrinar progenitor phenotype. We will generate endothelial
microtissues consisting of a core of human salivary gland endothelial cells (hSECs) and a shell of human
mesenchymal stem cells (hMSCs). We will co-culture the epithelial and endothelial microtissues in a synthetic
extracellular matrix with defined cell-guidance cues to aid in the establishment of a hierarchically integrated
tissue assembly. In Aim 3, the engineered gland with integrated microvasculature and conjugated neurotrophic
factor, neurturin, will be implanted in the resected parotid bed of athymic rats. Enzymatically triggered release of
neurturin will promote implant innervation. Tissue ultrastructure, biomarker expression, gland morphology,
biointegration and function will be assessed under various construct configurations. We will interrogate how the
engineered microenvironments stimulate differentiation, trigger polarization and promote branching. The overall
hypothesis is that hS/PCs co-cultured with hSECs/hMSCs in 3D synthetic matrices displaying biochemical,
geometrical and mechanical cues identified from the native organs will assemble into functional salivary tissues.
Our investigations will help define bioengineering approaches toward the management of xerostomia.
项目摘要
尽管治疗策略取得了进展
放射疗法对头颈癌的影响,降低了约50,000名癌症患者的生活质量
在美国,我们旨在开发组织工程方法来恢复唾液功能。我们已经孤立了
放射疗法之前,患者的人唾液腺茎/祖细胞(HS/PC)。我们创建了
可调水凝胶矩阵,可维持祖细胞状态,诱导谱系特异性分化并促进
分散的HS/PC的有组织的多细胞球体的发展。单独,我们已经设计了
在HS/PC衍生的acini样核心之间表现出协调的钙激活的唾液腺微动物
以及周围的肌上皮细胞。但是,具有广泛分支,极化acini的功能腺
相互联系的管道尚未实现。在这里,我们提出了一种自下而上的方法来建立
使用定义形状,几何形状和组成的多细胞组件的功能性唾液腺。我们将
合成水凝胶支架,概括了地下膜和间质基质的关键特征
在发育中的器官中。我们将重建该血管,神经和间充质成分
设计的环境可在体外促进组织形态发生,并在体内维持组织稳态。在
AIM 1,我们将利用四嗪连接,S-之间的生物正交和高效的环加成反应
四嗪和紧张的烯烃,用于建立细胞教学矩阵。我们将适应我们的既定
产生含有隔离的乙酰胆碱类似物Carbachol(CCH)的微凝胶的方法。在AIM 2中,我们将
采用非粘附水凝胶微孔生产由HS/PC组成的多细胞上皮组件
和CCH仓库。最终的微动物将被包裹在具有生物活性的合成基底膜中
肽以刺激前骨祖细胞表型的发展。我们将产生内皮
由人类唾液腺内皮细胞(HSEC)和人类外壳组成的核心小动物
间充质干细胞(HMSC)。我们将在合成中共同培养上皮和内皮微动物
细胞外基质具有定义的细胞指示提示,以帮助建立层次结构
组织组件。在AIM 3中,具有整体微脉和共轭神经营养的工程腺
因素,神经蛋白,将植入切除的无胸腺大鼠的腮腺床中。酶触发的释放
神经蛋白会促进植入神经。组织超微结构,生物标志物表达,腺形态,
生物整合和功能将在各种构造配置下进行评估。我们将询问如何
设计的微环境刺激分化,触发极化并促进分支。总体
假设是与HSEC/HMSC共同培养的3D合成矩阵,显示生化,
从天然器官鉴定出的几何和机械提示将组装成功能性唾液组织。
我们的调查将有助于定义对静态管理的生物工程方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinqiao Jia其他文献
Xinqiao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinqiao Jia', 18)}}的其他基金
Bottom-Up Assembly of Functional Salivary Gland Tissues
功能性唾液腺组织的自下而上组装
- 批准号:
10400243 - 财政年份:2021
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9028226 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10604269 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10209183 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
10394924 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
A Hydrogel-Based Cellular Model of the Human Vocal Fold
基于水凝胶的人类声带细胞模型
- 批准号:
9193072 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8360585 - 财政年份:2011
- 资助金额:
$ 45.81万 - 项目类别:
ELASTOMERIC POLYMERS & TUNABLE BIOLOGICAL FUNCTIONS FOR VOCAL FOLD TISSUE ENG
弹性聚合物
- 批准号:
8168491 - 财政年份:2010
- 资助金额:
$ 45.81万 - 项目类别:
相似国自然基金
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向肝癌射频消融的智能建模与快速动力学分析方法研究及其临床验证
- 批准号:62372469
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
IRF9调控CD8+T细胞介导微波消融联合TIGIT单抗协同增效抗肿瘤的作用机制
- 批准号:82373219
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
建立可诱导细胞消融系统揭示成纤维细胞在墨西哥钝口螈肢体发育及再生中的作用
- 批准号:32300701
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤源PPIA介导结直肠癌肝转移射频消融术残瘤化疗抵抗的机制研究
- 批准号:82302332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Insights into Coronary Microvascular Dysfunction in Diabetic Cardiomyopathy
糖尿病心肌病冠状动脉微血管功能障碍的见解
- 批准号:
10657041 - 财政年份:2023
- 资助金额:
$ 45.81万 - 项目类别:
Molecular mechanism of neuronal control in sweat gland development
神经元控制汗腺发育的分子机制
- 批准号:
10928886 - 财政年份:2023
- 资助金额:
$ 45.81万 - 项目类别:
Insights into Coronary Microvascular Dysfunction in Diabetic Cardiomyopathy
糖尿病心肌病冠状动脉微血管功能障碍的见解
- 批准号:
10705359 - 财政年份:2022
- 资助金额:
$ 45.81万 - 项目类别:
Role of Sympathetic Innervation in Islet Plasticity during Pregnancy.
交感神经支配在怀孕期间胰岛可塑性中的作用。
- 批准号:
10388837 - 财政年份:2022
- 资助金额:
$ 45.81万 - 项目类别:
Role of Sympathetic Innervation in Islet Plasticity during Pregnancy.
交感神经支配在怀孕期间胰岛可塑性中的作用。
- 批准号:
10565670 - 财政年份:2022
- 资助金额:
$ 45.81万 - 项目类别: