A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
基本信息
- 批准号:10194764
- 负责人:
- 金额:$ 19.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAction PotentialsAcuteAlbuminuriaAlgorithmsAnimal ModelAntihypertensive AgentsAttenuatedCD8-Positive T-LymphocytesCardiometabolic DiseaseCathetersChronicChronic DiseaseChronic Kidney FailureClinical ResearchClinical TrialsCollagenComputer ModelsContractsDOCADenervationDepositionDevelopmentDevicesDiseaseElectrodesEnd stage renal failureEngineeringExcretory functionFDA approvedFeedbackFibrosisGlomerular Filtration RateGlomerulonephritisHypertensionInflammationInflammatoryKidneyKidney DiseasesKnowledgeLaboratoriesLeadLinkLiverMacrophage ActivationManufacturer NameMeasuresMediatingMedicalModelingMorbidity - disease rateMusNerveNerve BlockOperative Surgical ProceduresOrganPancreasPathogenesisPathologicPathologyPatientsPeripheral Nerve StimulationPhysiologicalPre-Clinical ModelProcessRattusRenal Blood FlowRenal functionReninRenin-Angiotensin-Aldosterone SystemReportingResearchRodent ModelRoleSheepSodiumSodium ChlorideSpleenStimulusSystemTechnologyTestingTranslatingUnited StatesVascular resistanceWaterbasecomparative efficacycytokinedesignexperienceexperimental studyglomerular filtrationhypertension treatmentin silicoin vivointerstitialkidney vascular structuremortalityneuroregulationneurotechnologynovelpre-clinicalpreclinical studypressurepreventrelating to nervous systemrenal arteryresponsesuccesstherapeutic targettool
项目摘要
ABSTRACT
Chronic overactivity of renal nerves results in physiological and pathological changes in renal function that
contribute to kidney-based diseases. Hypertension is correlated with increased activity of sympathetic nerves to
the kidneys in preclinical models, and in most of these models, hypertension is attenuated by renal denervation
(RDN). Clinical trials building on these models have demonstrated that catheter-based RDN is effective in
lowering arterial pressure in hypertensive patients. The success of catheter-based RDN to treat hypertension
has catalyzed the emerging field of electroceuticals, which is based on the concept of organ-specific
neuromodulation (rather than ablation) for cardiometabolic diseases. Whereas ablation is non-reversible and
non-tritratable, neuromodulation can be incorporated into a closed-loop feedback design to precisely regulate
the activity of nerves as desired. Moreover, neuromodulation can be turned off and restarted as needed.
Combined, our laboratories have extensive knowledge on the role of renal nerves in the pathogenesis of
hypertension and the mechansims mediating the anti-hypertensive effect of RDN in rodent models (Co-PI
Osborn) as well as experience in developing computational modeling tools to design neurotechnologies (Co-PI
Johnson. We aim to translate this knowledge to the development of a novel implantable technology for
neuromodulation of the kidney for treatment of neurally-mediated renal pathology in a translational large animal
model of renal pathology (DOCA-salt sheep). In Specific Aim 1, we will develop a bidirectional renal nerve cuff
interface, first in silico and then in the lab, to electrically block (E-Block) and sense (E-Sense) renal nerve activity
in sheep. In Specific Aim 2, we will optimize stimulus parameters of renal E-block in vivo by comparing the acute
renal responses to E-Block to those observed following surgical ablation in anesthetized DOCA-hypertensive
sheep. Successful development of this neuromodulatory tool for treatment of renal disease can be translated to
treat other chronic diseases associated with overactivity of renal nerves including chronic kidney disease and
end-stage renal failure. Moreover, this same technology can potentially be used to modulate other organs (e.g.
liver, pancreas, spleen) for the treatment of chronic cardiometabolic diseases that are linked to excessive nerve
activity.
抽象的
肾神经的慢性过度活动导致肾功能的生理和病理变化,
有助于肾脏疾病。高血压与交感神经活动增加有关
临床前模型中的肾脏,并且在大多数这些模型中,高血压通过肾脏去神经支配而减弱
(RDN)。基于这些模型的临床试验表明,基于导管的 RDN 在以下方面是有效的:
降低高血压患者的动脉压。基于导管的 RDN 治疗高血压的成功
促进了电子药物的新兴领域,该领域基于器官特异性的概念
针对心脏代谢疾病的神经调节(而不是消融)。鉴于消融是不可逆的并且
不可三重调节的神经调节可以纳入闭环反馈设计中以精确调节
神经的活动如所期望的。此外,神经调节可以根据需要关闭和重新启动。
总之,我们的实验室对肾神经在肾病发病机制中的作用拥有广泛的知识。
高血压以及 RDN 在啮齿动物模型中介导抗高血压作用的机制 (Co-PI
Osborn)以及开发计算建模工具来设计神经技术的经验(Co-PI
约翰逊.我们的目标是将这些知识转化为新型植入技术的开发
肾脏神经调节治疗大型动物神经介导的肾脏病理学
肾脏病理模型(DOCA-盐羊)。在具体目标1中,我们将开发双向肾神经袖带
接口,首先在计算机中,然后在实验室中,用于电阻断(E-Block)和感测(E-Sense)肾神经活动
在羊中。在具体目标 2 中,我们将通过比较急性肾 E 阻滞体内的刺激参数来优化肾 E 阻滞的体内刺激参数。
麻醉 DOCA 高血压患者手术消融后观察到的肾脏对 E-Block 的反应
羊。这种用于治疗肾脏疾病的神经调节工具的成功开发可以转化为
治疗与肾神经过度活跃相关的其他慢性疾病,包括慢性肾病和
终末期肾功能衰竭。此外,同样的技术还可以用于调节其他器官(例如,
肝脏、胰腺、脾脏)用于治疗与神经过度相关的慢性心脏代谢疾病
活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Douglas Johnson其他文献
Matthew Douglas Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Douglas Johnson', 18)}}的其他基金
Training Program in Translational Neuromodulation
转化神经调节培训计划
- 批准号:
10412589 - 财政年份:2022
- 资助金额:
$ 19.25万 - 项目类别:
Training Program in Translational Neuromodulation
转化神经调节培训计划
- 批准号:
10659148 - 财政年份:2022
- 资助金额:
$ 19.25万 - 项目类别:
A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
- 批准号:
10455432 - 财政年份:2021
- 资助金额:
$ 19.25万 - 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
- 批准号:
10282964 - 财政年份:2021
- 资助金额:
$ 19.25万 - 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
- 批准号:
10489838 - 财政年份:2021
- 资助金额:
$ 19.25万 - 项目类别:
Optimizing pallidofugal modulation of midbrain and thalamic nuclei for treating cognitive-motor signs of Parkinson's disease
优化中脑和丘脑核的苍白球调节以治疗帕金森病的认知运动体征
- 批准号:
10703249 - 财政年份:2021
- 资助金额:
$ 19.25万 - 项目类别:
Spatiotemporal Optimization of Deep Brain Stimulation for Parkinson's Disease
帕金森病脑深部刺激的时空优化
- 批准号:
10680463 - 财政年份:2016
- 资助金额:
$ 19.25万 - 项目类别:
Spatiotemporal optimization of deep brain stimulation for Parkinson's Disease
帕金森病脑深部刺激的时空优化
- 批准号:
9278298 - 财政年份:2016
- 资助金额:
$ 19.25万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Linking rare primate ganglion cells to downstream visual functions
将稀有灵长类神经节细胞与下游视觉功能联系起来
- 批准号:
10721221 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Electrical Mapping Signatures of Adverse Structural and Functional Remodeling in Ventricular Arrhythmia
室性心律失常不良结构和功能重塑的电图特征
- 批准号:
10571137 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Genes and Nutrition: Dietary Choline, the Gut Microbiota, and Atrial Fibrillation
基因与营养:膳食胆碱、肠道微生物群和心房颤动
- 批准号:
10646383 - 财政年份:2022
- 资助金额:
$ 19.25万 - 项目类别:
A Versatile Chemical-Genetic Approach to Determine Bases for Arrhythmogenesis and Sodium Channelopathies
确定心律失常发生和钠离子通道病基础的多功能化学遗传学方法
- 批准号:
10608370 - 财政年份:2022
- 资助金额:
$ 19.25万 - 项目类别: