Electrical Mapping Signatures of Adverse Structural and Functional Remodeling in Ventricular Arrhythmia
室性心律失常不良结构和功能重塑的电图特征
基本信息
- 批准号:10571137
- 负责人:
- 金额:$ 17.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAction PotentialsAcuteAnti-Arrhythmia AgentsAreaArrhythmiaBiomedical EngineeringCardiacCardiac ablationCardiomyopathiesCause of DeathCell physiologyCessation of lifeCicatrixClassificationClassification SchemeClinicalCommunicationCoronary ArteriosclerosisCoronary arteryDataData AnalysesData ScienceDatabasesDiagnosisDiseaseElectrophysiology (science)EngineeringEnrollmentEtiologyFellowshipFibrosisFingerprintFoundationsFunctional disorderFutureGadoliniumGoalsGrowthHeartHeart AbnormalitiesHeart AtriumHeart failureImageImplantable DefibrillatorsInterventionIschemiaKnowledgeLabelLinkMachine LearningMagnetic Resonance ImagingMapsMeasurementMeasuresMedicineMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMethodsModelingMyocardialMyocardial IschemiaMyocardiumNational Heart, Lung, and Blood InstituteNetwork-basedOutcomePatientsPharmaceutical PreparationsPharmacotherapyPhenotypePhysiologicalPreventionProceduresRecurrenceRefractoryResearchResearch InfrastructureResourcesRiskRisk AssessmentScientistSignal TransductionStructural defectSudden DeathTechniquesTherapeuticTherapeutic InterventionTimeTrainingTranslatingTranslational ResearchTranslationsUnited StatesUnited States National Institutes of HealthVentricularVentricular ArrhythmiaVentricular FibrillationWritingarrhythmogenic cardiomyopathyclinical decision-makingclinical trainingclinical translationdensityimaging studyimprovedin vivoindexinginnovationmachine learning modelmultimodal datamultimodalityneural networknovelnovel therapeuticspatient registrypatient responsepatient stratificationporcine modelpredict clinical outcomeprogramsresponseskillsspatial relationshipsupportive environmenttargeted treatmenttooltreatment responsevoltage
项目摘要
PROJECT SUMMARY
Ventricular arrhythmias remain the leading cause of death in patients with cardiomyopathy and account for up
to 300,000 deaths per year in the United States. However, the current classifications of these rhythms is based
largely on whether the cardiomyopathy is due to obstructed coronary arteries and poorly stratifies patient
response to therapy, arrhythmic risk, and pathophysiology.
The goal of this project is to develop an actionable classification scheme for ventricular arrhythmias in patients
with cardiomyopathy that is based on the interplay between both structural and electrical abnormalities
measured from each patient’s heart. Such a classification, based in measurements of pathophysiology, would
inform the clinical approach to risk assessment, interventional therapies, and medications.
The proposal outlines three Specific Aims: 1) To identify electrical fingerprints of endocardial, mid-myocardial
and epicardial scar using machine learning of endocardial high-density contact electrograms trained to the
ground truth of regional delayed gadolinium fibrosis on magnetic resonance imaging, from our large patient
registry. 2) To develop and validate a mapping strategy that could be used at clinical electrophysiology to
measure ventricular refractory period, a measure of electrical remodeling that indicates ability to sustain VA, by
machine learning of high density electrical signals from the heart of a porcine model labeled by repolarization
indices from the gold standard, simultaneously recorded, monophasic action potentials. And 3) To derive novel
phenotypes of arrhythmogenic cardiomyopathy in patients with VA based on regional distributions of fibrosis
and electrical remodeling, and associate these with acute response to ablation and recurrence in a well-
characterized patient registry.
To successfully complete the proposed project, training objectives include 1) advanced MRI processing and
segmentation, 2) machine learning models for multimodal data analysis, 3) translational interventional
procedures, and 4) translational clinical electrophysiology. The proposed NHLBI K23 award will provide
protected time for the candidate to obtain this advanced training, to disseminate new knowledge via written and
spoken communication, and to build the foundation for an independent research program focused on
ventricular arrhythmia diagnosis, prevention, and therapy in a supportive environment of established
mentorship, collaborators, and interdisciplinary experts spanning engineering and medicine.
项目摘要
心肌病患者的心律不齐仍然是死亡的主要原因,并解释了
在美国,每年30万人死亡。但是,这些节奏的当前分类是基于
主要关于心肌病是否是由于冠状动脉阻塞而引起的,并且患者分层较差
对治疗,心律失常和病理生理学的反应。
该项目的目的是制定患者心室心律失常的可行分类方案
基于结构和电气异常之间的相互作用的心肌病
从每个患者的心脏中测量。这种基于病理生理学测量的分类将
告知风险评估,介入疗法和药物的临床方法。
该提案概述了三个具体目标:1)识别心内膜中心的电气指纹
使用机器学习接受训练的心内膜高密度接触电子的机器学习
来自我们大型患者的区域延迟的磁共振成像的区域延迟纤维化的地面真相
注册表。 2)制定和验证可以在临床电生理学上使用的映射策略
测量心室难治期,一种电气重塑的度量,表明可以维持VA的能力,
从猪模型的心脏学习高密度电信号的机器学习,该猪模型通过重圆度标记
黄金标准的指数,简单地记录了单相动作电位。 3)衍生小说
基于纤维化区域分布的VA患者心律失常心肌病的表型
和电重塑,并将其与在井中的消融和复发相关联
表征患者注册表。
为了成功完成拟议项目,培训对象包括1)高级MRI处理和
分割,2)用于多模式数据分析的机器学习模型,3)翻译介入
程序和4)翻译临床电生理学。拟议的NHLBI K23奖将提供
保护候选人获得此高级培训的时间,通过书面和
口语交流,并为重点的独立研究计划奠定基础
在既定的环境中
涉及工程和医学的识别人,合作者和跨学科专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Albert Joseph Rogers其他文献
BS-400-31 ASSOCIATION BETWEEN SLEEP APNEA, ATRIAL FIBRILLATION AND INCIDENT STROKE IN A VERY LARGE POPULATION OF YOUNG INDIVIDUALS
- DOI:
10.1016/j.hrthm.2022.03.1206 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Sunil K. Vasireddi;Brototo Deb;Prasanth Ganesan;Ruibin Feng;Albert Joseph Rogers;Tina Baykaner;Neal Kumar Bhatia;Paul Clopton;Sanjiv M. Narayan - 通讯作者:
Sanjiv M. Narayan
Albert Joseph Rogers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms driving cardiac dysfunction in Autosomal Dominant Polycystic Kidney Disease
常染色体显性多囊肾病心脏功能障碍的驱动机制
- 批准号:
10618336 - 财政年份:2022
- 资助金额:
$ 17.17万 - 项目类别:
Calcium and MAPKinase Signaling and Structural Remodeling in Atrial Fibrillation
心房颤动中的钙和 MAPK 激酶信号传导及结构重塑
- 批准号:
10604289 - 财政年份:2021
- 资助金额:
$ 17.17万 - 项目类别:
The effects of cochlear pericytes and pericyte-related vascular pathology on hearing function
耳蜗周细胞及周细胞相关血管病理对听力功能的影响
- 批准号:
10553675 - 财政年份:2020
- 资助金额:
$ 17.17万 - 项目类别:
Evaluating astrocyte loss after traumatic brain injury in initiation of post-traumatic epilepsy
评估创伤性脑损伤后引发创伤后癫痫的星形胶质细胞损失
- 批准号:
10593792 - 财政年份:2018
- 资助金额:
$ 17.17万 - 项目类别: