Linking rare primate ganglion cells to downstream visual functions
将稀有灵长类神经节细胞与下游视觉功能联系起来
基本信息
- 批准号:10721221
- 负责人:
- 金额:$ 13.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAction PotentialsAcuteAdvisory CommitteesAmacrine CellsAreaBehaviorBehavioralBlindnessBrainCalciumCell CommunicationCell physiologyClassificationCodeConsciousCortical BlindnessDetectionDiseaseElectrophysiology (science)EyeEye MovementsFacultyFeedbackFluorescenceFoundationsGoalsHealthImageImaging TechniquesIndividualInvestigationKnowledgeLasersLesionLightLinkLongitudinal StudiesMacacaMeasuresMediatingMentorsModelingMotionNeuronsOphthalmoscopyOptokinetic nystagmusOutputPathway interactionsPatientsPhasePhysiologicalPhysiologyPopulationPositioning AttributePrimatesPropertyReflex actionResearchResolutionRetinaRetinal DegenerationRetinal Ganglion CellsRetrograde DegenerationRoleScanningSignal TransductionSourceSpeedStandard ModelStrokeStructureTechnical ExpertiseTechniquesTestingTracerTrainingTrans-Synaptic DegenerationUniversitiesViral VectorVisionVisualVisual CortexVisual PathwaysVisual PerceptionVisual SystemVisual impairmentVisualizationadaptive opticsblindcareercell typeexperimental studyganglion cellimprovedin vivoin vivo calcium imagingneuraloptical imagingpreservationresponseskillstemporal measurementtenure tracktimelinetooltransmission processvisual informationvisual neurosciencevisual processingvoltage
项目摘要
ABSTRACT
Retinal ganglion cells (RGCs) provide the sole source of visual information to the brain and form the building
blocks for all downstream vision. In primates, considerable progress has been made in characterizing the three
most common RGC types, which make up 80% of the retinal output, and much less is known about the remaining
15+ rarer RGC types. A key barrier to progress has been the difficulty of targeting these rare RGCs in acute
experiments. These challenges have been overcome with an approach for visualizing the structure and function
of foveal RGCs in the living macaque eye by combining calcium imaging, retrograde tracers and fluorescence
adaptive optics scanning light ophthalmoscopy (FAOSLO). FAOSLO imaging is non-invasive and enables study
of the same RGC populations for months or years. This technique has enabled in vivo classification of foveal
RGCs to identify the elusive rarer types. This proposal aims to extend the capabilities of FAOSLO imaging to
directly test the roles of these rare RGCs in vision while establishing the foundation for an independent research
career. Aim One will implement high-speed scanning strategies and voltage indicators to read the retinal code
in the living eye and achieve the temporal resolution necessary to study rare motion-sensitive RGCs. Aim Two
will directly test the hypothesis that the rare ON direction selective RGC type contributes to optokinetic eye
movements in primates using targeted laser lesions of individual RGCs. Aim Three will establish a paradigm to
isolate rare RGCs and the visual functions they mediate through transneuronal retrograde degeneration following
V1 lesions. This line of investigation will also clarify the timeline of RGC loss and the underlying physiological
changes that occur in RGCs following V1 damage in strokes. The research goals of this proposal are reinforced
by a comprehensive training plan that will provide the new skills and knowledge necessary to achieve the
candidate’s research goal of establishing the links between rare primate RGCs and visual functions. The
candidate will carry out the mentored phase with Dr. David Williams, a pioneer in the use of adaptive optics for
imaging the eye. Co-mentor Dr. Bill Merigan will contribute expertise in behavioral experiments, lesions and viral
vectors. Additional training from a first-rate advisory committee (Drs. Krystel Huxlin, Tony Movshon and Jesse
Schallek) will put the candidate on a strong pathway to independence. Together, the research and training
proposed will facilitate the candidate’s successful transition to a tenure-track faculty position at a research-
intensive university.
抽象的
视网膜神经节细胞(RGC)为大脑提供了唯一的视觉信息来源,并形成建筑物
所有下游视觉的块。在私人中,在表征这三个方面取得了很大进展
最常见的RGC类型,占剩余输出的80%,剩余的少得多
15多个稀有RGC类型。进步的关键障碍是在急性中瞄准这些稀有RGC的困难
实验。这些挑战已经通过可视化结构和功能的方法来克服
通过结合钙成像,逆行示踪剂和荧光,在活猕猴眼中的中央凹RGC
自适应光学扫描光眼镜检查(Faoslo)。 Faoslo成像是无创的,可实现研究
数月或数年的相同RGC人群中。该技术已实现了动脉凹的体内分类
RGC识别难以捉摸的稀有类型。该建议旨在将Faoslo成像的能力扩展到
直接测试这些罕见RGC在视觉中的作用,同时为独立研究建立基础
职业。 AIM ONE将实施高速扫描策略和电压指标来读取剩余代码
在活眼睛中,并实现研究稀有运动敏感RGC所需的临时分辨率。瞄准两个
将直接检验以下假设:罕见在方向上选择性RGC类型有助于光动量
使用单个RGC的靶向激光病变中的主运动。目标三将建立一个范式
分离出稀有的RGC及其通过跨神经元逆行变性所介导的视觉功能
V1病变。这种调查线还将阐明RGC损失的时间表和基本的生理学
v1损害中风后RGC发生的变化。该提案的研究目标得到了加强
通过一项全面的培训计划,该计划将提供实现必要的新技能和知识
候选人的研究目标是建立稀有灵长类动物RGC与视觉功能之间的联系。这
候选人将与David Williams博士一起进行此事阶段,David Williams博士是使用自适应光学器件的先驱
成像眼睛。 Co-Merigan博士将在行为实验,病变和病毒方面贡献专业知识
向量。一流咨询委员会的额外培训(Krystel Huxlin博士,Tony Movshon和Jesse
Schallek)将使候选人走上强大的独立途径。一起研究和培训
拟议的将促进候选人的成功过渡到研究的终身教师职位 -
密集大学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara S Patterson其他文献
Sara S Patterson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara S Patterson', 18)}}的其他基金
Foveal ganglion cell function in the living eye
活体眼睛中中心凹神经节细胞的功能
- 批准号:
10671959 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别:
Foveal ganglion cell function in the living eye
活体眼睛中中心凹神经节细胞的功能
- 批准号:
10456593 - 财政年份:2021
- 资助金额:
$ 13.35万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Electrical Mapping Signatures of Adverse Structural and Functional Remodeling in Ventricular Arrhythmia
室性心律失常不良结构和功能重塑的电图特征
- 批准号:
10571137 - 财政年份:2023
- 资助金额:
$ 13.35万 - 项目类别:
Genes and Nutrition: Dietary Choline, the Gut Microbiota, and Atrial Fibrillation
基因与营养:膳食胆碱、肠道微生物群和心房颤动
- 批准号:
10646383 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别:
A Versatile Chemical-Genetic Approach to Determine Bases for Arrhythmogenesis and Sodium Channelopathies
确定心律失常发生和钠离子通道病基础的多功能化学遗传学方法
- 批准号:
10608370 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别:
Genes and Nutrition: Dietary Choline, the Gut Microbiota, and Atrial Fibrillation
基因与营养:膳食胆碱、肠道微生物群和心房颤动
- 批准号:
10410651 - 财政年份:2022
- 资助金额:
$ 13.35万 - 项目类别: