A Versatile Chemical-Genetic Approach to Determine Bases for Arrhythmogenesis and Sodium Channelopathies
确定心律失常发生和钠离子通道病基础的多功能化学遗传学方法
基本信息
- 批准号:10608370
- 负责人:
- 金额:$ 66.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-22 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAction PotentialsAcuteAffinityAnimalsArrhythmiaBinding SitesBiochemicalBiologyBrainBrugada syndromeCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCardiovascular DiseasesCellsChemicalsChronicClinicalClustered Regularly Interspaced Short Palindromic RepeatsCongenital Heart BlockCouplingCytoskeletonDevelopmentDilated CardiomyopathyDiseaseElectrophysiology (science)ElementsEngineeringEnvironmentFibrosisGene ExpressionGene TargetingGenerationsGenesGenetic ModelsGenotypeGoalsHeartHeterozygoteHumanHuman PathologyIn SituIn VitroInheritedKnockout MiceLong QT SyndromeMediatingMethodologyMolecularMolecular ConformationMouse StrainsMusMuscle CellsMutationOralOutcomePathogenicityPatientsPeripheralPharmaceutical PreparationsPharmacologyPhenotypePhysiologicalPhysiologyPlayPredispositionProductionProtein IsoformsProteinsRNAResearchRodent ModelRoleRouteSodiumSodium ChannelSudden DeathSyndromeSystemVariantaorta constrictionbasechemical geneticsexperimental studygain of function mutationgenetic approachheart functionimaging approachin vivoindium arsenideinduced pluripotent stem cellintraperitoneallentivirally transducedloss of functionmouse modelnanomolarnovelpharmacologicresponsestemtherapeutic targetvoltage
项目摘要
Abstract
The voltage-gated sodium channel NaV1.5 controls cardiac excitability and is an established therapeutic target.
Mutations in the SCN5A gene, which encodes NaV1.5, are associated with inherited arrhythmia syndromes (long
QT syndrome, Brugada syndrome, congenital heart block) and dilated cardiomyopathy. While gain of function
mutations that disrupt NaV1.5 inactivation explain action potential duration (APD) and QTc prolongation, the
mechanisms by which loss of function NaV1.5 mutations cause the other diverse pathogenic outcomes are
unresolved. The physiological significance of other Na+ channel genes expressed in the heart are also uncertain.
Rodent models with gene-targeted Scn5a mutations can recapitulate some clinical features of disease, but their
use is complicated by compensatory mechanisms that may occur early in development. In addition, the available
pharmacological blockers of NaV1.5 block brain Na+ channels and other potential cardiac Na+ channels with
equal or greater potency, limiting their utility. In order to advance our understanding of NaV1.5-related biology,
we have developed a chemical-genetic model to achieve acute and reversible silencing of NaV1.5 in situ. We
engineered a NaV1.5 channel that contains a high-affinity, isoform-specific binding site for acylsulfonamide (GX)
drugs, enabling chemical strategies to pharmacologically drive nonconducting channel conformations. The
NaV1.5-GX channel has WT voltage-dependent gating and, unlike WT NaV1.5 and most other putative cardiac
Na+ channels, is blocked by nanomolar concentrations of GX compounds. We have used CRISPR gene-editing
to replace the endogenous Scn5a locus with the GX binding site in mice, creating a novel NaV1.5GX strain.
Homozygous NaV1.5GX/GX mice have normal cardiac phenotypes, yet the acute application of nanomolar GX
compounds to NaV1.5GX/GX isolated cardiac myocytes ablates Na+ current (INa). Systemic drug application in vivo
results in conduction slowing in NaV1.5GX/WT mice, and conduction block and sudden death in NaV1.5GX/GX mice,
thus providing a facile means to study NaV1.5 function and SCN5A-mediated disease. We propose first to
examine the effects of acute Nav1.5 blockade by GX compounds on gene expression, Ca2+ handling, ROS
production, fibrosis, cardiac function and arrythmias will be studied using NaV1.5GX/WT and NaV1.5GX/GX cardiac
myocytes and mice, and compared to chronic Nav1.5 blockade using Scn5a+/- heterozygous knockout mice. We
will then identify the effects of Na+ channel blockade on structural and electrophysiological remodeling, and on
arrhythmia susceptibility following Transverse Aortic Constriction (TAC). Lastly, we will develop in vivo and ex
vivo platforms to study SCN5A mutations identified in patients. The Scn5aGX mouse presents a unique
opportunity to examine the phenotypes of human SCN5A mutations in a cardiac environment. In total, we
anticipate these efforts will reveal novel molecular mechanisms of genotype-phenotype coupling stemming from
SCN5A's role in controlling cardiac excitability.
抽象的
电压门控钠通道 NaV1.5 控制心脏兴奋性,是一个既定的治疗靶点。
编码 NaV1.5 的 SCN5A 基因突变与遗传性心律失常综合征(长
QT 综合征、Brugada 综合征、先天性心脏传导阻滞)和扩张型心肌病。在功能获得的同时
破坏 NaV1.5 失活的突变解释了动作电位持续时间 (APD) 和 QTc 延长,
NaV1.5 功能丧失突变导致其他不同致病结果的机制是
未解决。心脏中表达的其他Na+通道基因的生理意义也不确定。
具有基因靶向 Scn5a 突变的啮齿动物模型可以重现疾病的一些临床特征,但它们的
开发早期可能出现的补偿机制使使用变得复杂。此外,可用的
NaV1.5 的药理学阻断剂可阻断脑 Na+ 通道和其他潜在的心脏 Na+ 通道
相同或更大的效力,限制了它们的效用。为了增进我们对 NaV1.5 相关生物学的理解,
我们开发了一种化学遗传模型来实现 NaV1.5 原位急性和可逆沉默。我们
设计了一个 NaV1.5 通道,其中包含酰基磺酰胺 (GX) 的高亲和力、亚型特异性结合位点
药物,使化学策略能够在药理学上驱动非传导通道构象。这
NaV1.5-GX 通道具有 WT 电压依赖性门控,与 WT NaV1.5 和大多数其他假定的心脏不同
Na+ 通道被纳摩尔浓度的 GX 化合物阻断。我们已经使用了 CRISPR 基因编辑
在小鼠中用 GX 结合位点替换内源性 Scn5a 位点,创建新的 NaV1.5GX 菌株。
纯合 NaV1.5GX/GX 小鼠具有正常的心脏表型,但纳摩尔 GX 的急性应用
NaV1.5GX/GX 分离心肌细胞的化合物可消除 Na+ 电流 (INa)。体内全身药物应用
导致 NaV1.5GX/WT 小鼠传导减慢,并导致 NaV1.5GX/GX 小鼠传导阻滞和猝死,
从而为研究 NaV1.5 功能和 SCN5A 介导的疾病提供了一种简便的方法。我们首先建议
检查 GX 化合物急性 Nav1.5 阻断对基因表达、Ca2+ 处理、ROS 的影响
将使用 NaV1.5GX/WT 和 NaV1.5GX/GX 心脏研究生产、纤维化、心脏功能和心律失常
肌细胞和小鼠,并与使用 Scn5a+/- 杂合基因敲除小鼠的慢性 Nav1.5 阻断进行比较。我们
然后将确定 Na+ 通道阻断对结构和电生理重塑的影响,以及
横主动脉缩窄(TAC)后心律失常的易感性。最后,我们将开发体内和体外
用于研究患者中发现的 SCN5A 突变的体内平台。 Scn5aGX 鼠标呈现出独特的
有机会在心脏环境中检查人类 SCN5A 突变的表型。总共,我们
预计这些努力将揭示基因型-表型耦合的新分子机制
SCN5A 在控制心脏兴奋性中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher A Ahern其他文献
Christopher A Ahern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher A Ahern', 18)}}的其他基金
Chemical biology of voltage-gated cation channels
电压门控阳离子通道的化学生物学
- 批准号:
10552311 - 财政年份:2023
- 资助金额:
$ 66.31万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10550272 - 财政年份:2021
- 资助金额:
$ 66.31万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10156779 - 财政年份:2021
- 资助金额:
$ 66.31万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10334544 - 财政年份:2021
- 资助金额:
$ 66.31万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10407714 - 财政年份:2021
- 资助金额:
$ 66.31万 - 项目类别:
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
- 批准号:
10627046 - 财政年份:2021
- 资助金额:
$ 66.31万 - 项目类别:
Mining the tRNA genome by live-cell imaging
通过活细胞成像挖掘 tRNA 基因组
- 批准号:
10005950 - 财政年份:2019
- 资助金额:
$ 66.31万 - 项目类别:
Photochemical determination of sodium channel voltage-dependent gating and composition
钠通道电压依赖性门控和成分的光化学测定
- 批准号:
9402276 - 财政年份:2017
- 资助金额:
$ 66.31万 - 项目类别:
Photochemical determination of sodium channel voltage-dependent gating and composition
钠通道电压依赖性门控和成分的光化学测定
- 批准号:
10004154 - 财政年份:2017
- 资助金额:
$ 66.31万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Linking rare primate ganglion cells to downstream visual functions
将稀有灵长类神经节细胞与下游视觉功能联系起来
- 批准号:
10721221 - 财政年份:2023
- 资助金额:
$ 66.31万 - 项目类别:
Electrical Mapping Signatures of Adverse Structural and Functional Remodeling in Ventricular Arrhythmia
室性心律失常不良结构和功能重塑的电图特征
- 批准号:
10571137 - 财政年份:2023
- 资助金额:
$ 66.31万 - 项目类别:
Genes and Nutrition: Dietary Choline, the Gut Microbiota, and Atrial Fibrillation
基因与营养:膳食胆碱、肠道微生物群和心房颤动
- 批准号:
10646383 - 财政年份:2022
- 资助金额:
$ 66.31万 - 项目类别:
Genes and Nutrition: Dietary Choline, the Gut Microbiota, and Atrial Fibrillation
基因与营养:膳食胆碱、肠道微生物群和心房颤动
- 批准号:
10410651 - 财政年份:2022
- 资助金额:
$ 66.31万 - 项目类别: